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Abstract—The aim of this paper is to evaluate the predicted 

reliability of mechatronic systems, by taking into account the 

epistemic uncertainties. The work reported here presents a new 

methodology based on integrating the belief functions in the Petri 

net (PN) model, in order to create a belief network, and to show 

how to propagate the parametric uncertainties in reliability 

models. Some notions of uncertainty related to systems reliability 

are presented; subsequently a brief definition of the belief 

function and its application in reliability studies are given and 

finally its integration in PN is detailed. In order to take into 

account the interactive aspect of mechatronic systems, we 

introduce the uncertainties associated to this interaction, by 

implementing the new method proposed by using belief network. 

Secondly, we study the propagation of these interaction 

uncertainties in system reliability. Finally, an industrial example 

of an "intelligent actuator" is developed, applying the proposed 

methodology. 
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Introduction 
 
In reliability assessment studies of complex systems, the 
uncertainties represent an actual challenge, especially for 
mechatronics systems, basically the concept   principle of 
the mechatronics manifests itself in exploiting to the 
maximum these multi domain couplings to offer a higher 
economic and technical performance; hence the 
complexity at all levels increases the risk of malfunction, 
the methods and the tools available to the designers which 
enable them to reliability are very various. 
 
So the ultimate goal of any analysis is to predict reliability 
with a certain degree of confidence. Generally these 
uncertainties are divided in to two types: random 
uncertainties and epistemic uncertainties [1].  

According to [2] and [3], the types of uncertainties are 
presented in Figure 1: 

 

  
Figure 1: Types of uncertainties 

 
The random uncertainties are characterized by variability, 
stochastic, and irreducible aspects, and random events [3], 
such as: the event initiator, failure at solicitation or failure 
in functioning, for which we associate Poisson models, 
binomial... The epistemic uncertainties result from 
imprecise, unobservable, cognitive and reducible 
knowledge, for example: imprecise failure rate, imprecise 
repair rate… 
Furthermore, epistemic uncertainties can be categorized 
as either model uncertainties or parameter uncertainties. 
Model uncertainties are due to assumptions and 
simplifications related to the structure of the system, 
meaning an imprecision at the level of logical relations 
between the components, and representing the common 
failure modes. 

 
Parameter uncertainties represent the lack of information 
for the input data of a reliability model; according to [3] 
they can be classified as follows: 

• Components reliability data (failure rate, 
repair rate ...) 

• Data related to the operating profile with 
determination of the status coefficients. 
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Many recent works ([4], [5], [6]) are treating the epistemic 
uncertainties for complex systems, by using belief function 
and Bayesian network. 
Usually the reliability estimation of mechatronic system 
([7],[8])  is done by qualitative and quantitative 
approaches. This study is based on a double qualitative 
analysis: functional and dysfunctional. The functional one 
allows obtaining an arborescent decomposition of the 
system by the method of Structured Analysis and Design 
Technique (S.A.D.T). Dysfunctional analysis is established 
using the Failure Mode and Effect Analysis (FMEA) method 
for failures. Both analyses will be used to build a PN model.  
An important thing to keep in mind is that mechatronic 
systems are dynamic, hybrid, interactive and 
reconfigurable systems [9]. We can notice the lack of 
studies on this topic, especially on evaluating the 
reliability of the multi domains interactions of 
mechatronic systems. 
Therefore our contribution allows analyzing the 
Interactive aspect, as well as the propagation of the 
parameter uncertainties related to multi-domain 
interactions. Reliability is predicted by taking into account 
the overall uncertainty for each component of the system, 
and then computing the inference of the effects of those 
failures on the rest of the system. 
In order to represent the multi-domain interactions, an 
organic analysis is implemented [10], and in our recent 
work [9] we introduced the multi domains interactions as 
influence factors associated to stress acceleration laws, 
such as Arrhenius law for temperature, or Cox law for 
several interactions. In the overview of the state-of-the art, 
we did not find a complete methodology to evaluate the 
uncertainties related to the mechatronic reliability 
together with the multi-domain interactions.  In this paper 
we propose to assess these uncertainties by using the 
belief functions integrated to PN model.  
, We present a brief definition of the belief function, as well 
as of the belief mass, Belief function “BEL” and plausibility 
“PL”, and then their implementation in reliability 
assessment. The choice of a suitable tool for modeling the 
uncertainties of complex systems has been well detailed in 
preview works ([1],[5]), belief functions are an effective 
tool and a unique framework for taking into account 
random and epistemic uncertainties concurrently. 

I. THEORY OF BELIEF: 

The Dempster-Shafer theory, also known as the theory of 
belief functions, is a generalization of the Bayesian theory 
of subjective probability. Whereas the Bayesian theory 
requires probabilities for each question of interest, belief 
functions allow basing degrees of belief for one question 
on probabilities for a related question [12] 

A. Mass function  

Let x be a discrete random variable taking values in the 
frame of discernment where all of its possible events are 

mutually exclusive elementary propositions (Ω = {x1, x2,… 
xn}). x can be also seen as a question and Ω as the set of 
possible answers to the question. Given a piece of evidence 
held by an agent, the state of belief about the actual value 
xo taken by x is represented by a Basic Belief Assignment 
(BBA). The BBA is defined as a mapping (also called a mass 
function m(A)) that assigns values to the elements of the 
power set 2Ω in the interval [0, 1], such that: 





A

Am 1)(  

m (A) represents the part of belief assigned to the 
hypothesis that the truth lies in the subset A (i.e., the 
hypothesis x0 ? A) without further dividing this belief to a 
strict subset of A. 
There are two other important functions to represent 
knowledge: the belief function (bel) and the plausibility 
function (Pl). They are presented by the following 
expressions:  
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Bel (A) is the degree to which the evidence supports A, 
and Pl(A) is the maximal degree of support that could be 
assigned to A if there were more available evidence. Pl (A) 
may also be defined as the extent to which we fail to 
disbelieve the hypothesis of A. 

II. EVIDENTIAL NETWORK WITH PETRI NETWORK: 

Petri nets are considered as a powerful tool for modeling 
and predicting the reliability of a complex system. This 
choice is justified by the fact that this model is widely used 
in the modeling of dynamic hybrid systems [7]. In order to 
take into account the uncertainties, we use the belief 
functions, by implementing two functions BEL and PL, 
which have been associated with failure trees ([4], [13], 
[14]), and Bayesian networks. [5]  

We propose a new method which consists in integrating 
uncertainties in the PN model. Each transition will be 
characterized by the interval of uncertainties [λmin, λmax], 

considered as the minimum rate and the maximum rate, 
defined as variables Bel and PL, through the relations cited 
before. 

 
To better understand the projection of the belief function, 

and the modeling the reliability of systems by using belief 
functions with serial configuration, let us consider a 
coherent system composed of two components [2] :  m 
Ω1×Ω2×ΩSSérie ({(W1, W2, WS), (W1, F2, FS ), (F1, W2, 
FS),(F1, F2, FS)}) = 1 

 
In this approach, the Basic Probability Assignments (BPAs) 
of components are obtained by the two relations 

))max(1( Wi te
n

i
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))max( fi te
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Thereafter, we affect the belief masses to each component:   
    fi = Fiim  
     wi= wiim  
    Wi-fi-1 = WiFi,im  

Then the system reliability Rs is bounded by the interval:           
[Bel ({WS}), Pl({WS})]. 
 
It is then possible to write that (4): RS ∈ [Bel ({WS}), Pl 
({WS})] 
such as:  

  = (Ws) Bel 
n

i

Wi
 

 
n

i

fi)1(= (Ws) PL  

Supposing the use of exponential law for the failure 
probabilities, we obtain: 

))min(1(  = (Ws) Bel teWi
n
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In order to create a Petri Network associated to Belief 
function, we associate to each failure transition in the PN 
model the interval [λmin, λmax]. The functions “Bel” and “PL” 
are computed using variables in PN model. This method 
will be used in the following application. 

B. Application: 

 
As an application example of this methodology, we choose 
the interaction coil/bearing as interaction between the 
electric domain and mechanical domain. An «intelligent 
actuator" [10], is a mechatronic system designed to carry 
out the unloading function of the wagons., Our objective is 
to evaluate the propagation of parameter uncertainty 
associated to this interaction, and its influence on the 
reliability of the whole system. The qualitative modeling 
(functional and dysfunctional) has been described in [10]: 

                  
Figure 1. Intelligent actuator system cited in [10] 

We considered a series configuration of the system, with 
the components: “the control and diagnostic card” of the 
actuator, the “conditioning card of the Hall effect probe”, 

“ Coil”, “inductor with magnet”, and “guide bearing”. The 
rest of the elements of the system are not taken into 
account. 
In the PN model, we introduce the Probability of failure for 
each component as a transition between two places 
(working state to failure state), by affecting a probability 
law (exponential law to electronic field, Weibull law to 
mechanical field). 
An imprecision concerning the failure rate of each 
component (six components) is given by the experts in the 
form of an interval [λmin, λmin], with a confidence interval of 
90% for failure time cited in [11]: 

 
Component  failure rate min failure rate max 

Control Card  1.72E-07  1/h 2.22E-07 1/h 

Packaging Card    1.16E-061/h 1.66E-061/h 

Coil 5.10E-051/h 5.60E-051/h 

Inductor 5.10E-051/h 5.60E-051/h 

Guide Bearing   
MTTF= 0.81E+03 MTTF= 1.3E+04 

Beta =1.5 Beta =1.5 

Hall effet Hall  1.21E-071/h 1.7E-071/h 

 

Table 1: Component failure rate 

 
In order to represent the functions “BEL” and “PL”, we 

use the previously presented equations of functions based 
on the table of failure rate.  
 

The simulation of this model was done using the Petri 
Net V12 tool of the GRIF software suite and is presented in 
the following: 
 

 
Figure 2. Belief Petri Network model under uncertainties  

 
The results of this simulation are illustrated in Figure 3 
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Figure 3. System reliability with taking into account the uncertainty  

 

From a simulation up to t = 50 000 hours, and by taking into 

account the parametric uncertainties, we find that the 

reliability of the intelligent actuator system is bounded by the 

credibility function Bel, and the plausibility PL. The reliability 

of the system is R= [0.30, 0.35] for t=20000h.  

 

III. PROPAGATION OF THE UNCERTAINTIES OF MULTI-DOMAIN 

INTERACTIONS IN EVALUATING THE RELIABILITY. 

 
As it was stated in the introduction, after modeling the 
multi-domain interaction in [9] as an influence factor, the 
purpose is to analyze the propagation of the parametric 
uncertainty related to this influence factor, (uncertainty of 
the failure rate …) and its impact on the system reliability. 
The following figure represents the proposed approach: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Reliability model Belief Petri network  
  

 

 

A. Application:  
 

In order to illustrate these notions let us consider the 
example of the mechatronic system "Intelligent 
actuator", for which the interaction taken into account 
is an interaction between a mechanical element 
"BEARING" and an electrical element "COIL", and for 
which the associated influence factor is the 
temperature influences on the operating state, by 
degradation of the bearing. 

 

B. Temperature Uncertainty:  
 

We consider the parametric uncertainty related to the 
temperature of “Bearing” in its degraded state, in the hot 
phase. The two curves: Minimum temperature “T-min” and 
Maximum temperature “T-max” are presented in Figure 5. 

 

 
Figure 5. Temperature diagram of the coil 

 
C. Uncertainty related to the coil failure rate: 

 
The multi-domain interaction Bear /Coil has been treated 
in [9], as an influence factor described by the Arrhenius 
law.  
 

1). Formulation of the Arrhenius Law 
 

We consider the following model deterministically relating 
the lifetime of a component to its operating temperature: 

                  )*/(.)( 0 TKEaeAT   

 (t):  Component lifetime, 

Boltzmann constant k = 8, 6171 ×10−5 eV/◦C 

Ea: activation energy parameter characterizing     

the kinetics of degradation electron volt (eV).  

A0: constant associated with the component. 

Af: The acceleration factor Af between two different 
temperatures T and T ': 
 

 )'/1/1(*/exp*/' TTKETTA af 
 

By approximation [15] we obtain the relation failure 

rate which is used in the following:  

 
Reliability 

model 
Belief Petri 

network  

Imprecision of data relating to 
multi-domain interaction. 

Temperature curves (Tmin, 
Tmax) ... .. 

 

Parametric 

uncertainties related 
to the reliability of 

the system 
 

RS= [Bel ({WS}), 

Pl ({WS})] 

 
Imprecision 

on the 

reliability 
data for 

components 

(λ, μ ...). 
Interval 

distribution. 
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)/(.),,( 000 TTeTT a 
 

D. Failure rates of the coil: 
 
The relations of Arrhenius law indicate that failure rate is 
proportional to the parameters T-min, T-max. Therefore 
the λmin, λmax for the coil  are defined as dynamic variables 
changed proportionally with these temperatures, 
including its parametric uncertainties. 

max)/(.),,max( max000 TTeTT a 

min)/(.),,min( min000 TTeTT a   

 
Figure 6. Evolution Failure rate of the coil 

 
As presented in this figure, the failure rate (Lambda min) 
grows from the reference value of 5.1. 10-5/h to 1.4510-
5, and (lambda- max) have a variation from the reference 
value to 1.7 10-4. These two dynamic variables (failure 
rate) will be integrated in the PN model presented before 
in the transition corresponding to “Coil”. 

 
E. PN Model with interaction: 
 
After representing the knowledge on the uncertainties 
related to influence factors (temperatures), and after 
observing its propagation on the coil failure rate, we adapt 
the PN model, considering failure transition associated to 
the coil as a dynamic transition related to the variable 
failure rate (λmin, λmax). Then we infer the influence of the 
uncertainty propagation of this multi-domain interaction 
and its effect on the reliability of the system. The sampling 
technique used here is to generate the boundaries for the 
reliability functions Bel and Plausibility 

))min(1(= (Ws) Bel te
n

i

   

))max(1(= (Ws) PL te
n

i

   

Finally we simulate the PN model using the simulator of 
GRIF software with these new parameters. The results are 
represented in Figure 7.  

 
Figure 7. System reliability with taking into account of the uncertainty and 

of the interactive multi domain 

 
The reliability of the "Intelligent Actuator" system, taking 
into account the bearing / coil interaction is bounded 
between the two curves “PL” and “Bel approximately 7 
months: 

BEL (t =5000 hours) = 0,066 
PL (t =5000 hours) = 0,117 

 

F. Comparison (with/without Interaction) 
 

Within this framework, it is worth noticing that the 
comparison of the reliability of the system “actuator” 
without/with interaction, was made in [9], but without 
making a representation of the parametric uncertainties. 
In this paper we present the Bel and PL functions, 
illustrated for both cases. 
Therefore, we find from these curves in Figure 8:  

 
Figure 8. Comparison of system reliability curves with taking into account 

of the uncertainty for multi domain interactions 

  
For t = 5000 hours (approximately 7 months) of operation: 
                 
R with interaction =[0,066  -0,117]               
R without interaction =[0,703;0,754] 
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IV. CONCLUSIONS 

 
Considering the results obtained, we can conclude that the 
integration of belief function in the PN model is an 
effective method for dealing with parametric uncertainties 
in assessing the reliability of mechatronic systems. 
The proposed approach for taking into account the 
parametric uncertainty related to multi-domain 
interactions has been applied in the "Intelligent Actuator" 
system, through which we analyzed the propagation of 
this uncertainty to system reliability.  
In the case of a mechatronic system with several multi-
domain interactions, we can apply the same approach; by 
taking account the uncertainties related to each 
interaction, based on others stress acceleration laws, as for 
example Cox's law. 
As a perspective, the random uncertainties represent the 
uncertainty of the logical relations between the 
components, especially for a mechatronic system as a 
reconfigurable system. Moreover, a more precise study of 
“common failure modes” and also of model dependencies 
between components seems to us an interesting way for 
futures works. 
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