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Abstract— Type 1 diabetes affects 415 million patients in the 

world, the treatment of this illness still limited to external 

injection of insulin. The Artificial Pancreas (AP) inject 

automatically the needed amount of insulin through the day. 

In the presented work a new method of control of AP is 

introduced based on Model Predictive Control (MPC). 

The result of in silico simulation done on the FDA-accepted 

UVa\Padova metabolic simulator shows a great improvement in 

the development of AP by rejecting rapidly the effect of meal 

intake and avoiding hypoglycemia.  
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I. INTRODUCTION 

 

Type 1 Diabetes Metabolism (T1DM) is auto immune 

disease results from the pancreas's incapacity to produce 

enough insulin. When insulin is lacking the level of glucose 

rise and hyperglycaemia spends a long time and has a big 

glucose peak which cause a lot of complications. T1DM can 

only be treated by external insulin injections. Insulin is a 

hormone that allows glucose absorption in body cells in order 

produce energy. Artificial Pancreas (AP) is a very effective 

therapeutic solution to this disease.  

 

The AP system computes and injects the right amount of 

insulin needed to regulate blood glucose, it is composed from 

tree components; subcutaneous glucose sensor (CGM), a 

subcutaneous insulin pump, and a control algorithm. Quite 

recently, considerable attention has been paid to develop AP 

system. Some of this research are supported by the Juvenile 

Diabetes Research Foundation, the European Commission, 

and the National Institutes of Health (see Refs. [1–9]).  

 

Automatic blood glucose is a complicate tasks given that a 

lots of challenge exist, for example meal disturbance, big 

delay in subcutaneous measure and injection and recognition 

of physical exercises and illness. 

 

The main objectives of the AP is to keep blood glucose in the 

euglycemic zone (avoiding hypoglycemia and limiting 

hyperglycemia) the maximum possible, minimize the amount 

of insulin to inject and emulate the functioning of the natural 

pancreas. 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Image of an Artificial Pancreas 

 

The most important part of the AP is the control algorithm, 

which is in charge to compute the quantity of insulin to inject 

in the subcutaneous tissue on the basis of the subcutaneous 

continuous glucose measurements. The wide used control 

algorithm in this application is Proportional Integrator 

Derivative (PID) and the Model Predictive Control (MPC). 

 

PID has been used in 2014 by Jacobs et al. to design a control 

algorithm that incorporates both fading memory proportional 

derivative controller (FMPD) and adaptive system for 

estimating changing sensitivity [11]. In 2015 Huyett et al. 

realize a fully implantable AP using intra-peritoneal (IP) 

insulin delivery and glucose sensing [12]. In 2016 TT. Ly et al. 

determine the feasibility and efficacy of an automated PID 

with insulin feedback (PID-IFB) controller in overnight 

closed-loop (OCL) control of children and adolescents [13]. 

Pinsker et al. compare MPC and PID control for the AP, and 

indicate that MPC performed particularly well [14]. 

 

MPC has been used in 2015 by Jacobs et al. to show how 

exercise can be automatically detected and use an exercise 

dosing adjustment algorithm [15]. Del Favero et al. suggest in 

randomized 2-month study a modular model predictive 

control (MMPC) managed by a wearable system [16]. In 2016 

Resalat et al. introduce a DH-MPC approach that can switch 

between dual hormone and single hormone [17]. Renard et al.  

investigate a wearable AP during day and night (D/N-AP) for 

1 month under free-living conditions in patients with T1DM. 

Doyle’s group extend the MPC by defining a new cost 
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function named zone MPC instead of a set point target in 

several works described in [19-22]. 

 

 
 

Fig.2 Components of Artificial Pancreas 

 

 

Based on the approach presented in [23], the purpose of this 

paper is to design a control algorithm that can overcomes 

actual challenges in the automatic glucose control. The 

principle of the new method is to introduce a new formulation 

of the cost function of MPC that gives a fast controller 

capable to reject rapidly the effect of meal intake and avoid 

hypoglycemia. 

The remainder of the paper is organized into the followings 

sections: Section II outlines the modelization phase, section 

III discusses the design and the tuning of the controller. In 

silico trials are presented in Section IV, section V concludes 

the paper. 

II.  MODELIZATION 

A. Insulin-glucose transfer function 

 

The model used in this work is a discrete time, linear time-

invariant (LTI) system, the sample-period is T = 5 [min], the 

input of the model is the insulin bolus UIN,i [U] and the plant 

output is the blood-glucose value YBG,i [mg/dL]. The model is 

linearized around a steady-state that leads to an output ys = 

110 [mg/dL].  

The input and the output can be written as: 

  

 

 

 Y(Z-1) is the z-transform of output yi and U(Z-1) is the z-

transform ui. The transfer function is described as follows: 

 

 
 

p1 = 0.98, p2 = 0.965 are poles, F:=1.5  is the safety factor, 

UTDI [U] is the subject specific total daily insulin amount, and 

c is a constant used for unit conversion:      

 c := -60 (1-p1) (1-p2)2 

B. State-space model 

The transfer function can be transformed to the following state 

space model: 

 

 

    

 

 
 

    
 
 State-estimation 

We need to estimate the first value x0 in order to predict the 

other values of the state in the prediction horizon, for that we 

use a Luenberger observer, the estimator is implemented in 

this form: 

 

 
 

 

which is a linear time-invariant system with representing 

estimated states of xk and  representing the estimated BG 

Yk. The following equations define the gain L 

 
 

 
 

and P satisfies the discrete algebraic Riccati equation:  
+  

Where  and  are positive definite design 

parameters. 

 

III. CONTROL DESIGN AND TUNING  

A. Controller  

The controller chosen in this work is the MPC because it 

presents many advantages in control of blood glucose, first the 

use of constraints on the insulin delivery rate, further it can 
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compensate the delay induced by the system by prediction of 

the evolution of the system then the capacity to include effect 

of meals, exercise, and other events that are a function of the 

time of day and it provides the opportunity to integrate many 

form of cost function.  

The principle of MPC is to use a model to predict the effect of 

control moves on future outputs then to compute the optimal 

control using an optimization of the cost function. The basic 

idea is shown in Figure 3 for a constant future set point. 

B. Cost function 

In the proposed method we apply an exponential penalty on 

glucose excursions below the desired reference and a 

quadratic penalty on glucose excursions above the set point in 

order to get a fast control, the cost function J of the controller 

is defined as: 

 

 
With  R+ = 7000, R− = 3000  (Asymmetric cost function)  and 

a = 0.16 are parameters of the command. R and Q are 

weighting factor, the horizon of prediction is P=9 and N=5 is 

the horizon of command. The exponential penalty is used to 

compensate aggressively the hypoglycemia, however using a 

quadratic penalty on excursions above the reference to 

maintain a less aggressive response to hyperglycemia.  

 

Fig 3. Basic concept of MPC. 

 

C. Speed of command 

The two weighting factors Q and R play important role on the 

tuning of the MPC, they influence directly the performance of 

the command. Their values can determinate the speed of 

response of the algorithm to changes in glucose concentration 

and the aggressively of the control. In order to regulate 

glycaemia effectively and compensate the delay caused by 

subcutaneous injection and measure of glycaemia. We 

accelerate the regulation of glucose by injecting 

proportionally more insulin on rising and less in the 

decreasing phase of glycaemia.  

When Y is increasing, the cost function is penalized with R(α1) 

while the penalization is madded by  in the case of 

glucose decreasing, with α1 is the glucose rate of change. 

In Figure 4 we present a comparison of different control 

settings. 

Fig.4 Comparison of different control settings 

 

The optimization function of Matlab used in this work is 

fmincon function to solve constrained problem by applying the 

following hard constraint (ID′): −basal≦ID′≦72 U/h. 

IV. IN SILICO ARTIFICIAL PANCREAS EVALUATION 

 

In order to evaluate performance of the controller, in silico 

trials has been done on the US FDA-accepted Universities of 

Virginia/Padova metabolic simulator which provide trials 

equivalent to animal test [30]. 

 

The protocol of simulation included tree unannounced meals 

(60g CHO dinner 50g CHO breakfast 65g CHO lunch), in this 

simulation we compare the aMPC to zone model predictive 

controller (zMPC) used in [29]. The simulation start at 6:00 

PM and finish at 12:00 AM of the second day of simulation. 

 

Figure 5 depicts the mean BG and insulin delivery traces for 

30 in silico patients in the UVA/Padova simulator and the 

insulin profiles to regulate glycemia. Results show that the 

proposed controller ameliorate required performances in 

comparison with the other MPC controllers. The time spent in 

hyperglycemia and its magnitude has significantly down and 

the acceleration of the command allows to reject rapidly the 

effect of the disturbance related to meal intake also 

hypoglycemia was avoided by minimizing the insulin 

injection in the phase of glycemia decreasing.     

 

Table I shows statistics of simulation results for 30 in silico 

patients of the UVA/Padova simulator. This statistics confirm 
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the robustness and the efficacy of the accelerated-MPC 

(aMPC) by maximizing the time spent in the safe zone and 

ameliorating the general mean of glucose values. 

 

Table I: The percentage of time that all 30 patients with 

T1DM spent in different zone. 

 

Variable ZMPC Proposed 

MPC 

Mean glucose 143.6 145.3 

0[80,140]mg/dl 51% 56% 

[70,180]mg/dl 63% 68% 

>180 mg/dl 37% 30% 

<70 mg/dl 0.35% 0.25% 

Alarm of Hypos 4 2 

 

 
Fig. 5 Mean glucose (A) and insulin (B) traces of 30 in     

     silico subjects controlled by the zMPC  and 

aMPC. 

 

V. CONCLUSION 

 

In conclusion, many problems remain to be solved before an 

automatic blood glucose control becomes a reality, however a 

great improvement on the development of the AP has been 

done until now. This work present a contribution to ameliorate 

control algorithm for AP by introducing a novel formulation 

of the MPC which accelerate the speed of command and get 

satisfactory performance. The efficacy of the controller was 

validated by in silico test on the FDA-accepted UVa\Padova 

metabolic simulator. 
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