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Abstract— Genetic algorithms are metaheuristic algorithms, 
which mean that it generates useful solutions to solve NP-hard 
optimization problems in moderate execution times. However, 
Genetic algorithms usually require more computation power 
than other heuristic approaches do. Due to the complexity of 
problem such as TSP, finding a good solution with traditional 
ways needs a huge computational power (in term of processing 
power and memory usage) as well as time to solve. In this mater 
parallelism is an approach that not only reduce the resolution 
time but also improve the quality of the provided solutions. The 
latter holds since parallel algorithms usually run a different 
search model with respect to sequential ones. In this paper we 
have proposed a parallel implementation of Genetic algorithm on 
NVidia GPUs. We have done comparison on different 
parameters of the GA, which directly or indirectly affect the 
result, parallel comparison of speedup between CPU and GPU 
and best-known solution for both. 
 
Keywords— GPU, Parallel Genetic Algorithms, Sequential 
Genetic algorithms, Travelling Salesman Problem, CUDA. 

I. INTRODUCTION 

In the last two decades, the researcher from all 
over the world has been searching for new ways to 
optimize and improve the traditional techniques to 
solve complex NP-hard problems like TSP 
(Traveling SalesMan Problem), who require an 
enormous computational time if we considered a 
real life size example, which make it impossible to 
solve it in an acceptable time. 

In this context, some metaheuristic methods has 
been developed based on natural phenomenon 
observation, for example Genetic Algorithm (AG) 
that can be suitable to solve NP-hard optimization 
problems in moderate execution times. However, 
yet none of these algorithms have been able to 
reach the optimal solution for large-scale problem 
instances, and since there is no exact algorithm to 
solve an optimization problem in polynomial time, 
the minimal expected time to obtain optimal 
solution is exponential. Therefore, it is only 

possible to use metaheuristic algorithms to find 
approximate solutions for a given problem (a 
“good” solution). 

Even with the use of one of the metaheuristic 
methods, a complex problem such as TSP needs 
huge computational power as well as time to solve. 
It takes lots of time for a single processor to solve 
such large problems single handedly. To solve these 
type problems in real time some additional 
mechanism must be taken into consideration to 
speed up the calculation time. Metaheuristic 
algorithms can be implemented parallel with high 
efficiency by using multi processors, multi-cores, or 
Graphic Processing Units (GPUs). 

Graphical processing units (GPUs) are 
specialized processors with dedicated memory that 
conventionally perform floating point operations 
required for rendering graphics. In response to 
commercial demand for real-time graphics 
rendering, the current generation of GPUs have 
evolved into many-core processors that are 
specifically designed to perform data-parallel 
computation. Due to the inherently parallel nature 
of Genetic Algorithm, it is relatively easy way to 
implement on GPUs. However, it also brings some 
significant challenges due to its synchronization 
points and memory access patterns.  

The aim of this paper is to propose efficient 
parallelization of Genetic Algorithms on CUDA 
architecture with Graphics Processing Units. The 
experimental results showed that the GPU overpass 
the CPU for the large population size. 

II. PROBLEMS ADDRESSED 

To solve the traveling salesman problem, 
researchers have come up with several algorithms 
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to achieve the best-known solution; still, those 
methods always fail to find an acceptable solution 
in a reasonable time. Which leaves us with two 
options; either minimize the size of the problem or 
give up and accept the poor results. Luckily, some 
of the algorithm such as genetic algorithm can be 
implemented in a parallel environment to improve 
the performance. The popular method to parallelize 
an algorithm is to have a cluster of computers each 
with its own processor and memory, split the 
problem into sub-problems, and then assign each 
one to a computer. But then again, by adding 
computational power into the cluster, we can face 
the problem of overloading the network connecting 
the computers. 

III.  TRAVELING SALESMAN PROBLEM 

The Viennese mathematician Karl Menger made 
the first statement of the Traveling Salesman 
Problem (TSP) as we know it today in 1930. It 
arose in connection with "A new definition of curve 
length" that Menger proposed. As he defined the 
length of a curve as the least upper bound of the set 
of all numbers that could be obtained by taking 
each finite set of points of the curve and 
determining the length of the shortest polygonal 
graph joining all the points. "We call this the 
messenger problem, because in practice the 
problem has to be solved by every postman, and 
also by many travellers: finding the shortest path 
joining all of a finite set of points whose distances 
from each other are given. Of course, the problem 
can be solved by a finite number of trials. However, 
there is no such a rule that would reduce the 
number of trials to less than the number of 
permutations of the given points. The rule of 
proceeding from the origin to the nearest point, then 
to the nearest point to that, and so on, does not 
generally give the shortest path" [1]. 

The TSP is stated as, given a complete graph, G, 
with a set of vertices, V, a set of edges, E, and a 
cost, Cij, associated with each edge in E. The value 
Cij is the cost incurred when traversing from vertex 
i ∈ V to vertex j ∈ V. Given this information, a 
solution to the TSP must return the shortest 
Hamiltonian cycle of G (A Hamiltonian cycle is a 
cycle that visits each node in a graph exactly once. 
This is referred to as a tour in TSP terms). 

 

 
Fig. 1 Example of distances between cities 

 
Traveling Salesman Problem is one of the most 

studied combinatorial problems because it is simple 
to comprehend but hard to solve [2]. The problem is 
to find the shortest tour of a given number of cities 
which visits each city exactly once and returns to 
the starting city [3] 

At the first sight, TSP seems to be limited for a 
few application areas; however, it can be used to 
solve tremendous number of problems. Some of the 
application areas are; printed circuit manufacturing, 
industrial robotics, time and job scheduling of the 
machines, logistic or holiday routing, specifying 
package transfer route in computer networks, and 
airport flight scheduling. 

The Travelling Salesman Problem is one of the 
best-known NP-hard problems, which means that 
there is no exact algorithm to solve it in polynomial 
time. The minimal expected time to obtain optimal 
solution is exponential. Therefore, we usually use 
heuristics to help us to obtain a “good” solution. 
Many algorithms were applied to solve TSP with 
more or less success. There are various ways to 
classify algorithms, each with its own merits. The 
basic characteristic is the ability to reach optimal 
solution: exact algorithms or heuristics. 

There are various approaches to solve TSP the 
classical approaches are dynamic programming, 
branch and bound which uses heuristic and exact 
method and results into exact solution. Still, TSP is 
an NP-hard problem so the time complexity of 
these algorithms are exponential. Therefore, they 
can solve the small problem in optimal time but as 
compared to the large problem time taken by these 
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algorithms are quite high. Unfortunately no 
classical approach can solve this type of problem in 
reasonable time as the size of the problem increases 
complexity increases exponentially. 

Many alternate approaches are used to solve TSP, 
which may not give the exact solution but an 
optimal solution in a reasonable time. Methods like 
nearest neighbour, spanning tree based on the 
greedy approach are efficiently used to solve such 
type of problems with small size. To overcome this 
different other approaches based on natural and 
population techniques such as genetic algorithm, 
stimulated annealing, bee colony optimization, 
particle swarm optimization etc. are inspired from 
these techniques. 

 

IV.  GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are powerful search 
methods based on the biological concept of natural 
selection and genetics. They are being applied 
successfully to find acceptable solutions to 
problems in business, engineering, and science. 
GAs obeys the postulate of Charles Darwin’s theory 
of Survival Of The Fittest as occurs in nature. This 
algorithm starts with an initial population from a 
random assemblage of individuals that evolves 
from one generation to another, through the 
creation of new individuals with better fitness 
values and elimination of individuals with low 
fitness values. In GAs the populations evolves by 
applying genetic operators such as selection, 
crossover and mutation, whose functionality and 
implementation depends on the problem to solve. 
One of the main features of the genetic algorithm is 
its ease of parallelization, since they are based on 
populations of independent individuals, thereby 
calculating the fitness function and the results for 
an individual is not depend on the calculation of 
other individuals [4]. 

A. Individual Representation 

By finding the minimum distance between fixed 
cities, we can solve the stander Traveling Salesman 
Problem; therefore, the distance function depend on 
the order the cities in one tour. For this reason, each 
individual in the population will be an instance of 
vectors, where a vector consists of a list of 

randomly arranged cities. Note that the same cities 
must be used for each individual instance, ensuring 
that the salesman travels through the same set of 
cities, each time. 

B. Fitness Function 

The fitness function determines the probability of 
the solution that individuals have inside the 
population [4]. In this work, the cost function which 
represents the fitness function is given by the 
following equation, and the objective of the genetic 
algorithm is to minimize this cost function. 

 
 
Where dπ(i)π(i+1) is the distance between city i 

and city i+1 and dπ(n)π(1) is the distance between 
city n and the first city. 

C. Selection 

Based on the value of the fitness function, the 
algorithm determines which individual will leave 
offspring for the next generation. There are various 
selection methods used in GAs, such as roulette 
selection, tournament selection, and fitness 
proportional, all having the basic goal of selecting 
the individuals with the top fitness functions, which 
consists of three steps. In the first step, calculating 
the sum of the fitness function across all individuals. 
The second step, calculate the individual 
probabilities, which is simply the individual’s 
fitness divided by the sum of the fitness of all 
individuals in the same population. In the third step, 
we select two parents. 

D. Crossover 

After the two parents are selected, they are 
combined and the resulting individual has the 
ability to replace one of the parents or the 
individual with the worst fitness in the population. 
This step is known as crossover, as traits from each 
parent are used to create one or more children. 
There are several ways to apply the crossover 
operator such as crossing a single point, multi-point 
crossover, uniform crossover, among others. In this 
work, each individual in the population makes cross 
with another individual chosen by the selection 
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operator in each iteration and cross-used by a single 
point. Only one child is created per set of parents, 
copying all cities up through crossing point, from 
the first parent, into a new child, and then adding 
the rest of the elements from the second 
parent(when cities are added from the second parent, 
only cities that are not currently in the child will be 
added). This process is illustrated below. 

 

 
Fig. 2 Example of single point crossover 

E. Mutation 

The mutation creates an individual performing a 
change in chromosomes, usually small, on an 
individual of the population chosen randomly. The 
main objective of mutation is to give a chance to 
individuals with new genetic material. In this paper, 
the process of mutation used is by inversion where 
two positions of chromosomes randomly selected 
and two positions are inverted. 

 

 
Fig. 3 Example of swap mutation 

 

V. SEQUENTIAL GENETIC ALGORITHMS 

Sequential programming involves a consecutive 
and ordered execution of processes one after 
another. In other words with sequential 
programming, processes are run one after another in 

a succession fashion, computation is modelled after 
problems with a chronological sequence of events. 

The program in such cases will execute a process 
that will in turn wait for user input, then another 
process is executed that processes a return 
according to user input creating a series of 
cascading events. 

To use the genetic algorithm in an iterative 
manner, first we have to guess some initial 
solutions randomly and then combine the choosing 
ones (the fittest) to create a new generation of 
solutions which theoretically should be better than 
the previous generation. We also include a random 
mutation in the genes with some probability like in 
the real word. The genetic algorithm consists of the 
following steps: 

 

 
Fig. 4 Sequential Genetic algorithms 

Usually, the first population of GA is created by 
generating a group of individuals randomly. The 
size of the initial population is important because it 
influences the way the algorithm work and if it can 
find good solutions and the time need to do so. If 
the population is too small, it may reduce search 
space, and it will be difficult to identify good 
solutions [3]. If the population is too large, it is 
even harder to find a solution among those 
individuals since the algorithm have to use a lot of 
computational resources and processing time. In 
each iteration of the GA a new population of 
individuals is created based on the previous 
generation, having more chance to reproduce those 
with better fitness function. GAs are usually able to 
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find good solutions of combinatorial optimization 
problems in a reasonable time, but as applied to the 
biggest problems, the time needed to accomplish 
the task increase significantly. Therefore, many 
researcher have put so much efforts to implement 
faster GAs, and one of the most promising 
alternatives is to use parallel implementations, 
which can help in reducing the processing time. In 
recent years the development of powerful graphics 
processors has had a major boost, as a result we 
may have computing platforms with high 
performance and low cost. 

 

VI.  PARALLEL GENETIC ALGORITHMS 

There are two main possible methods to 
parallelism. The first of which is data parallelism, 
where the same instruction will be executed on 
numerous data simultaneously. The second one is 
control parallelism, which involves execution of 
various instructions concurrently [5]. 

Data parallelism is sequential by its nature as 
only the data manipulation is paralysed while the 
algorithm will be executed as the sequential one 
instruction in certain time. Thus, the majority of 
parallel genetic algorithms were data based 
parallelism. 

Parallel genetic algorithms arise from the need of 
computation required for extremely complex 
problems whose running time using sequential 
genetic algorithms is a limitation [6]. The use of 
parallel genetic algorithms aims to break a problem 
into several sub problems, solve them 
simultaneously on multiple processors, which 
improves the performance of search, and increase 
the probability of finding the best solution. In 
general, parallel algorithms behave in the same way 
as in the sequential algorithms, but with small 
different. In theory, parallel genetic algorithms can 
be divided into subtasks to maintain some balance 
in the distribution of activities, then; each processor 
can handle one of the sub-populations derived from 
the initial population of the genetic algorithm. 
There are several methods to parallelize a genetic 
algorithm. The first and most intuitive is the global, 
which is basically to parallelize the evaluation of 
the fitness function of individuals holding a single 
stock. A better option for parallelization of genetic 

algorithm is to divide the population into 
subpopulations that evolve separately and exchange 
individuals every few generations [6]. In this 
research, the TSP case will be solved by using the 
Genetic Algorithm on Graphical Processing Unit 
(GPU). 

VII.  RELATED WORK 

In its early emergence, the GPU is known as a 
graphics processor. But the numbers of processor 
cores in it attract the researchers to implement it 
data computing. A number of studies have been 
carried are related to GPU utilization in numeric 
data computing. Lefonn et al. developed a library to 
access the GPU data structures in generic and 
efficient way [7]. Mendez-Lojo et al. use GPU to 
run irregular algorithms that operate on pointer-
based data structures as graphs[8], resulting an 
average speed up of 7x compared to a sequential 
CPU implementation and outperforms a parallel 
implementation of the same algorithm running on 
16 CPU cores. The TSP case is frequently studied 
by the researchers of Yang and Nygard to observe 
the impact of genetic algorithm initial population in 
order to solve the TSP case by using the approach 
of time windows by using regular CPU [9]. Some 
researchers also investigate the TSP case in 
mathematical pint of view. Bartal et al. shown the 
algorithmic tractability of metric TSP depends on 
the dimensionality of the space and not on its 
specific geometry [10]. In another TSP study, 
Fekete et al. can solve the Fermat-Weber-Problem 
(FWP) with high accuracy in order to find a good 
heuristic solution for the MWMP [11]. 

 

VIII.  EXPERIMENT AND RESULT 

To test our algorithm we used some particular 
problems from TSPLIB[12]  to mimic real word 
scenarios and have an idea on how the proposed 
algorithm may work, This parallel algorithm is 
implemented by using both standard C++ for the 
serial version and CUDA C++ for the parallel 
version of the algorithm. The parallel version is 
compiled via CUDA compiler. The test libraries 
include 47, 50 and 279 cities. Each problem is 
solved with 10, 100, 1000, 10000 and 100000 
populations by applying 10, 100 and 1000 
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generations respectively. The GPU in this study is 
the NVIDIA GeForce GTX 1060. The serial 
version is run on an Intel Intel Xeon CPU E3-1220 
V2 3.10 GHz CPU. The operating system for this 
experiment is windows 8. The compiler for the 
parallel version is CUDA SDK 8.0. Table I shows 
the details of the underlying system. 

TABLE I 
DETAILS OF THE UNDERLYING SYSTEM 

 CPU GPU 

Manufacturer Intel NVIDIA 

Model 
Xeon E3-1220 

V2 
GTX 1060 

Architecture x86-64 Pascal 

Clock Frequency 3.10 GHz 1544 MHz 

Cores 4 1280 

DRAM Memory 8 GB 6 GB 

 
The solution quality as well as the execution time 

of the GA mainly depends on the parameter 
decisions. The parameters of the algorithm chosen 
in this study are as shown in Table II. 

TABLE IIIII 
PARAMETERS OF THE ALGORITHM 

Parameter Value 
Number of cities 48, 51 and 280 

Population size 
10, 100, 1000, 10000 and 
100000 

Crossover 2 Points 

Mutation rate 15% 

Generations 10, 100 and 1000 

 

A. Results 

The table below shows the average results of 3 
tries on every line for the CPU and GPU on 
problem a280_xy with 280 cities: 

TABLE IVVVI 
RESULTS FOR THE A280_XY 

Population Generations Time CPU 
(ms) 

Time GPU 
(ms) 

10 

10 89.5 1234.666667 

100 742.6666667 9559 

1000 7094.666667 92032.33333 

100 

10 203.1666667 1675.666667 

100 1859.5 13400.66667 

1000 18527.5 121213.6667 

1000 10 1310.166667 2787.833333 

100 12454.33333 22796.33333 

1000 123513 207465 

10000 

10 14605 7266 

100 140356 36558 

1000 1412560 343638 

100000 

10 *** *** 

100 *** *** 

1000 *** *** 

 
Form the two tables we can make a comparison 

on both CPU and GPU: 
For every population below 1800 individuals we 

can clearly see that the CPU deliver better 
performance over the GPU, which take a little 
longer to return the results. However, by increasing 
the population size, we notice that the CPU is 
struggling to run the algorithm and sometimes it 
cannot start the program due to huge work needed 
to initialize the massive data. 

In the other side, the GPU has no problem 
running the algorithm. In addition, the time needed 
for the GPU to complete the process did not growth 
badly as the CPU. 

 

 
Fig. 5 Graph showing the time needed to complete GA for 10 generations 

The graph shows that for larger population the 
GPU can produce the same results for less amount 
of time. 
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Fig. 6 Graph showing the time needed to complete GA for 100 generations  

Increasing the number of time the GA is executed 
(number of generations) the CPU take longer period 
to return any results (almost linear graph). 

 
Fig. 7 Graph showing the time needed to complete GA for 1000 generations 

 

IX.  CONCLUSIONS 

Apparently, the GPU made a better work in 
solving the TSP in all variations and with all 
parameters than the CPU if we considered a big 
population size as initial data, which take a long 
time to calculate. For the small size population, we 
can say that the CPU overpass the GPU in term of 
time. This phenomenon caused by the delay of 
write/read from the Graphic memory, every time 
we want to write or read from the GPU memory we 
have to have an equivalent amount of space in 
RAM. 

 

X. ANNEX 

 

A. eil51_xy (51 cities): 

TABLE VIIV 
RESULTS FOR THE EIL51_XY 

 

Population Generations AVG Time 
CPU (ms) 

AVG Time 
GPU (ms) 

10 

10 51.6666667 218.333333 

100 396.333333 1084.66667 

1000 3812 9480 

100 

10 66.6666667 276.333333 

100 498.5 1347.16667 

1000 4914.33333 11787.6667 

1000 

10 200.666667 666.833333 

100 1721.16667 2188.33333 

1000 16937.5 17231.5 

10000 

10 3633 4451 

100 35056 8777 

1000 349076 53940 

100000 

10 266834 56513 

100 1639040 229967 

1000 *** *** 

 

B. att48_xy (48 cities): 

 
TABLE V 

RESULTS FOR THE EIL51_XY 

Population Generations AVG Time 
CPU (ms) 

AVG Time 
GPU (ms) 

10 
10 48 250 
100 408 1134.66667 
1000 4021 9886.33333 

100 
10 62 272 
100 500.333333 1291.16667 
1000 4591.5 10889.8333 

1000 
10 191.666667 654.666667 
100 1671.5 2199 
1000 16232.1667 15841.1667 

10000 
10 3524 4468 
100 34169 8733 
1000 340358 53625 

100000 
10 267858 59638 
100 1656540 223404 
1000 *** *** 

 
***: hardware cannot run the algorithm. 
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