
Parallel Implementation of Travelling Salesman
Problem using Genetic Algorithm on GPU

Yassine Moumen, Otman Abdoun, Ali Daanoun

Department of Computer Science Polydisciplinary Faculty Abdelmalek Essaadi University

B.P 745, Poste Principale 92004 Larache, Morocco
Moumen.yassine@gmail.com

otman.fpl@gmail.com

a_daanoun@yahoo.fr

Abstract— Genetic algorithms are metaheuristic algorithms,
which mean that it generates useful solutions to solve NP-hard
optimization problems in moderate execution times. However,
Genetic algorithms usually require more computation power
than other heuristic approaches do. Due to the complexity of
problem such as TSP, finding a good solution with traditional
ways needs a huge computational power (in term of processing
power and memory usage) as well as time to solve. In this mater
parallelism is an approach that not only reduce the resolution
time but also improve the quality of the provided solutions. The
latter holds since parallel algorithms usually run a different
search model with respect to sequential ones. In this paper we
have proposed a parallel implementation of Genetic algorithm on
NVidia GPUs. We have done comparison on different
parameters of the GA, which directly or indirectly affect the
result, parallel comparison of speedup between CPU and GPU
and best-known solution for both.

Keywords— GPU, Parallel Genetic Algorithms, Sequential
Genetic algorithms, Travelling Salesman Problem, CUDA.

I. INTRODUCTION

In the last two decades, the researcher from all
over the world has been searching for new ways to
optimize and improve the traditional techniques to
solve complex NP-hard problems like TSP
(Traveling SalesMan Problem), who require an
enormous computational time if we considered a
real life size example, which make it impossible to
solve it in an acceptable time.

In this context, some metaheuristic methods has
been developed based on natural phenomenon
observation, for example Genetic Algorithm (AG)
that can be suitable to solve NP-hard optimization
problems in moderate execution times. However,
yet none of these algorithms have been able to
reach the optimal solution for large-scale problem
instances, and since there is no exact algorithm to
solve an optimization problem in polynomial time,
the minimal expected time to obtain optimal
solution is exponential. Therefore, it is only

possible to use metaheuristic algorithms to find
approximate solutions for a given problem (a
“good” solution).

Even with the use of one of the metaheuristic
methods, a complex problem such as TSP needs
huge computational power as well as time to solve.
It takes lots of time for a single processor to solve
such large problems single handedly. To solve these
type problems in real time some additional
mechanism must be taken into consideration to
speed up the calculation time. Metaheuristic
algorithms can be implemented parallel with high
efficiency by using multi processors, multi-cores, or
Graphic Processing Units (GPUs).

Graphical processing units (GPUs) are
specialized processors with dedicated memory that
conventionally perform floating point operations
required for rendering graphics. In response to
commercial demand for real-time graphics
rendering, the current generation of GPUs have
evolved into many-core processors that are
specifically designed to perform data-parallel
computation. Due to the inherently parallel nature
of Genetic Algorithm, it is relatively easy way to
implement on GPUs. However, it also brings some
significant challenges due to its synchronization
points and memory access patterns.

The aim of this paper is to propose efficient
parallelization of Genetic Algorithms on CUDA
architecture with Graphics Processing Units. The
experimental results showed that the GPU overpass
the CPU for the large population size.

II. PROBLEMS ADDRESSED

To solve the traveling salesman problem,
researchers have come up with several algorithms

Admin
Typewritten Text
International Conference on Automation, Control Engineering and Computer Science (ACECS)Proceedings of Engineering and Technology – PETVol.21pp.58 - 65

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

to achieve the best-known solution; still, those
methods always fail to find an acceptable solution
in a reasonable time. Which leaves us with two
options; either minimize the size of the problem or
give up and accept the poor results. Luckily, some
of the algorithm such as genetic algorithm can be
implemented in a parallel environment to improve
the performance. The popular method to parallelize
an algorithm is to have a cluster of computers each
with its own processor and memory, split the
problem into sub-problems, and then assign each
one to a computer. But then again, by adding
computational power into the cluster, we can face
the problem of overloading the network connecting
the computers.

III. TRAVELING SALESMAN PROBLEM

The Viennese mathematician Karl Menger made
the first statement of the Traveling Salesman
Problem (TSP) as we know it today in 1930. It
arose in connection with "A new definition of curve
length" that Menger proposed. As he defined the
length of a curve as the least upper bound of the set
of all numbers that could be obtained by taking
each finite set of points of the curve and
determining the length of the shortest polygonal
graph joining all the points. "We call this the
messenger problem, because in practice the
problem has to be solved by every postman, and
also by many travellers: finding the shortest path
joining all of a finite set of points whose distances
from each other are given. Of course, the problem
can be solved by a finite number of trials. However,
there is no such a rule that would reduce the
number of trials to less than the number of
permutations of the given points. The rule of
proceeding from the origin to the nearest point, then
to the nearest point to that, and so on, does not
generally give the shortest path" [1].

The TSP is stated as, given a complete graph, G,
with a set of vertices, V, a set of edges, E, and a
cost, Cij, associated with each edge in E. The value
Cij is the cost incurred when traversing from vertex
i ∈ V to vertex j ∈ V. Given this information, a
solution to the TSP must return the shortest
Hamiltonian cycle of G (A Hamiltonian cycle is a
cycle that visits each node in a graph exactly once.
This is referred to as a tour in TSP terms).

Fig. 1 Example of distances between cities

Traveling Salesman Problem is one of the most

studied combinatorial problems because it is simple
to comprehend but hard to solve [2]. The problem is
to find the shortest tour of a given number of cities
which visits each city exactly once and returns to
the starting city [3]

At the first sight, TSP seems to be limited for a
few application areas; however, it can be used to
solve tremendous number of problems. Some of the
application areas are; printed circuit manufacturing,
industrial robotics, time and job scheduling of the
machines, logistic or holiday routing, specifying
package transfer route in computer networks, and
airport flight scheduling.

The Travelling Salesman Problem is one of the
best-known NP-hard problems, which means that
there is no exact algorithm to solve it in polynomial
time. The minimal expected time to obtain optimal
solution is exponential. Therefore, we usually use
heuristics to help us to obtain a “good” solution.
Many algorithms were applied to solve TSP with
more or less success. There are various ways to
classify algorithms, each with its own merits. The
basic characteristic is the ability to reach optimal
solution: exact algorithms or heuristics.

There are various approaches to solve TSP the
classical approaches are dynamic programming,
branch and bound which uses heuristic and exact
method and results into exact solution. Still, TSP is
an NP-hard problem so the time complexity of
these algorithms are exponential. Therefore, they
can solve the small problem in optimal time but as
compared to the large problem time taken by these

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

algorithms are quite high. Unfortunately no
classical approach can solve this type of problem in
reasonable time as the size of the problem increases
complexity increases exponentially.

Many alternate approaches are used to solve TSP,
which may not give the exact solution but an
optimal solution in a reasonable time. Methods like
nearest neighbour, spanning tree based on the
greedy approach are efficiently used to solve such
type of problems with small size. To overcome this
different other approaches based on natural and
population techniques such as genetic algorithm,
stimulated annealing, bee colony optimization,
particle swarm optimization etc. are inspired from
these techniques.

IV. GENETIC ALGORITHMS

Genetic Algorithms (GAs) are powerful search
methods based on the biological concept of natural
selection and genetics. They are being applied
successfully to find acceptable solutions to
problems in business, engineering, and science.
GAs obeys the postulate of Charles Darwin’s theory
of Survival Of The Fittest as occurs in nature. This
algorithm starts with an initial population from a
random assemblage of individuals that evolves
from one generation to another, through the
creation of new individuals with better fitness
values and elimination of individuals with low
fitness values. In GAs the populations evolves by
applying genetic operators such as selection,
crossover and mutation, whose functionality and
implementation depends on the problem to solve.
One of the main features of the genetic algorithm is
its ease of parallelization, since they are based on
populations of independent individuals, thereby
calculating the fitness function and the results for
an individual is not depend on the calculation of
other individuals [4].

A. Individual Representation

By finding the minimum distance between fixed
cities, we can solve the stander Traveling Salesman
Problem; therefore, the distance function depend on
the order the cities in one tour. For this reason, each
individual in the population will be an instance of
vectors, where a vector consists of a list of

randomly arranged cities. Note that the same cities
must be used for each individual instance, ensuring
that the salesman travels through the same set of
cities, each time.

B. Fitness Function

The fitness function determines the probability of
the solution that individuals have inside the
population [4]. In this work, the cost function which
represents the fitness function is given by the
following equation, and the objective of the genetic
algorithm is to minimize this cost function.

Where dπ(i)π(i+1) is the distance between city i

and city i+1 and dπ(n)π(1) is the distance between
city n and the first city.

C. Selection

Based on the value of the fitness function, the
algorithm determines which individual will leave
offspring for the next generation. There are various
selection methods used in GAs, such as roulette
selection, tournament selection, and fitness
proportional, all having the basic goal of selecting
the individuals with the top fitness functions, which
consists of three steps. In the first step, calculating
the sum of the fitness function across all individuals.
The second step, calculate the individual
probabilities, which is simply the individual’s
fitness divided by the sum of the fitness of all
individuals in the same population. In the third step,
we select two parents.

D. Crossover

After the two parents are selected, they are
combined and the resulting individual has the
ability to replace one of the parents or the
individual with the worst fitness in the population.
This step is known as crossover, as traits from each
parent are used to create one or more children.
There are several ways to apply the crossover
operator such as crossing a single point, multi-point
crossover, uniform crossover, among others. In this
work, each individual in the population makes cross
with another individual chosen by the selection

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

operator in each iteration and cross-used by a single
point. Only one child is created per set of parents,
copying all cities up through crossing point, from
the first parent, into a new child, and then adding
the rest of the elements from the second
parent(when cities are added from the second parent,
only cities that are not currently in the child will be
added). This process is illustrated below.

Fig. 2 Example of single point crossover

E. Mutation

The mutation creates an individual performing a
change in chromosomes, usually small, on an
individual of the population chosen randomly. The
main objective of mutation is to give a chance to
individuals with new genetic material. In this paper,
the process of mutation used is by inversion where
two positions of chromosomes randomly selected
and two positions are inverted.

Fig. 3 Example of swap mutation

V. SEQUENTIAL GENETIC ALGORITHMS

Sequential programming involves a consecutive
and ordered execution of processes one after
another. In other words with sequential
programming, processes are run one after another in

a succession fashion, computation is modelled after
problems with a chronological sequence of events.

The program in such cases will execute a process
that will in turn wait for user input, then another
process is executed that processes a return
according to user input creating a series of
cascading events.

To use the genetic algorithm in an iterative
manner, first we have to guess some initial
solutions randomly and then combine the choosing
ones (the fittest) to create a new generation of
solutions which theoretically should be better than
the previous generation. We also include a random
mutation in the genes with some probability like in
the real word. The genetic algorithm consists of the
following steps:

Fig. 4 Sequential Genetic algorithms

Usually, the first population of GA is created by
generating a group of individuals randomly. The
size of the initial population is important because it
influences the way the algorithm work and if it can
find good solutions and the time need to do so. If
the population is too small, it may reduce search
space, and it will be difficult to identify good
solutions [3]. If the population is too large, it is
even harder to find a solution among those
individuals since the algorithm have to use a lot of
computational resources and processing time. In
each iteration of the GA a new population of
individuals is created based on the previous
generation, having more chance to reproduce those
with better fitness function. GAs are usually able to

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

find good solutions of combinatorial optimization
problems in a reasonable time, but as applied to the
biggest problems, the time needed to accomplish
the task increase significantly. Therefore, many
researcher have put so much efforts to implement
faster GAs, and one of the most promising
alternatives is to use parallel implementations,
which can help in reducing the processing time. In
recent years the development of powerful graphics
processors has had a major boost, as a result we
may have computing platforms with high
performance and low cost.

VI. PARALLEL GENETIC ALGORITHMS

There are two main possible methods to
parallelism. The first of which is data parallelism,
where the same instruction will be executed on
numerous data simultaneously. The second one is
control parallelism, which involves execution of
various instructions concurrently [5].

Data parallelism is sequential by its nature as
only the data manipulation is paralysed while the
algorithm will be executed as the sequential one
instruction in certain time. Thus, the majority of
parallel genetic algorithms were data based
parallelism.

Parallel genetic algorithms arise from the need of
computation required for extremely complex
problems whose running time using sequential
genetic algorithms is a limitation [6]. The use of
parallel genetic algorithms aims to break a problem
into several sub problems, solve them
simultaneously on multiple processors, which
improves the performance of search, and increase
the probability of finding the best solution. In
general, parallel algorithms behave in the same way
as in the sequential algorithms, but with small
different. In theory, parallel genetic algorithms can
be divided into subtasks to maintain some balance
in the distribution of activities, then; each processor
can handle one of the sub-populations derived from
the initial population of the genetic algorithm.
There are several methods to parallelize a genetic
algorithm. The first and most intuitive is the global,
which is basically to parallelize the evaluation of
the fitness function of individuals holding a single
stock. A better option for parallelization of genetic

algorithm is to divide the population into
subpopulations that evolve separately and exchange
individuals every few generations [6]. In this
research, the TSP case will be solved by using the
Genetic Algorithm on Graphical Processing Unit
(GPU).

VII. RELATED WORK

In its early emergence, the GPU is known as a
graphics processor. But the numbers of processor
cores in it attract the researchers to implement it
data computing. A number of studies have been
carried are related to GPU utilization in numeric
data computing. Lefonn et al. developed a library to
access the GPU data structures in generic and
efficient way [7]. Mendez-Lojo et al. use GPU to
run irregular algorithms that operate on pointer-
based data structures as graphs[8], resulting an
average speed up of 7x compared to a sequential
CPU implementation and outperforms a parallel
implementation of the same algorithm running on
16 CPU cores. The TSP case is frequently studied
by the researchers of Yang and Nygard to observe
the impact of genetic algorithm initial population in
order to solve the TSP case by using the approach
of time windows by using regular CPU [9]. Some
researchers also investigate the TSP case in
mathematical pint of view. Bartal et al. shown the
algorithmic tractability of metric TSP depends on
the dimensionality of the space and not on its
specific geometry [10]. In another TSP study,
Fekete et al. can solve the Fermat-Weber-Problem
(FWP) with high accuracy in order to find a good
heuristic solution for the MWMP [11].

VIII. EXPERIMENT AND RESULT

To test our algorithm we used some particular
problems from TSPLIB[12] to mimic real word
scenarios and have an idea on how the proposed
algorithm may work, This parallel algorithm is
implemented by using both standard C++ for the
serial version and CUDA C++ for the parallel
version of the algorithm. The parallel version is
compiled via CUDA compiler. The test libraries
include 47, 50 and 279 cities. Each problem is
solved with 10, 100, 1000, 10000 and 100000
populations by applying 10, 100 and 1000

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

generations respectively. The GPU in this study is
the NVIDIA GeForce GTX 1060. The serial
version is run on an Intel Intel Xeon CPU E3-1220
V2 3.10 GHz CPU. The operating system for this
experiment is windows 8. The compiler for the
parallel version is CUDA SDK 8.0. Table I shows
the details of the underlying system.

TABLE I
DETAILS OF THE UNDERLYING SYSTEM

 CPU GPU

Manufacturer Intel NVIDIA

Model
Xeon E3-1220

V2
GTX 1060

Architecture x86-64 Pascal

Clock Frequency 3.10 GHz 1544 MHz

Cores 4 1280

DRAM Memory 8 GB 6 GB

The solution quality as well as the execution time

of the GA mainly depends on the parameter
decisions. The parameters of the algorithm chosen
in this study are as shown in Table II.

TABLE IIIII
PARAMETERS OF THE ALGORITHM

Parameter Value
Number of cities 48, 51 and 280

Population size
10, 100, 1000, 10000 and
100000

Crossover 2 Points

Mutation rate 15%

Generations 10, 100 and 1000

A. Results

The table below shows the average results of 3
tries on every line for the CPU and GPU on
problem a280_xy with 280 cities:

TABLE IVVVI
RESULTS FOR THE A280_XY

Population Generations Time CPU
(ms)

Time GPU
(ms)

10

10 89.5 1234.666667

100 742.6666667 9559

1000 7094.666667 92032.33333

100

10 203.1666667 1675.666667

100 1859.5 13400.66667

1000 18527.5 121213.6667

1000 10 1310.166667 2787.833333

100 12454.33333 22796.33333

1000 123513 207465

10000

10 14605 7266

100 140356 36558

1000 1412560 343638

100000

10 *** ***

100 *** ***

1000 *** ***

Form the two tables we can make a comparison

on both CPU and GPU:
For every population below 1800 individuals we

can clearly see that the CPU deliver better
performance over the GPU, which take a little
longer to return the results. However, by increasing
the population size, we notice that the CPU is
struggling to run the algorithm and sometimes it
cannot start the program due to huge work needed
to initialize the massive data.

In the other side, the GPU has no problem
running the algorithm. In addition, the time needed
for the GPU to complete the process did not growth
badly as the CPU.

Fig. 5 Graph showing the time needed to complete GA for 10 generations

The graph shows that for larger population the
GPU can produce the same results for less amount
of time.

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

Fig. 6 Graph showing the time needed to complete GA for 100 generations

Increasing the number of time the GA is executed
(number of generations) the CPU take longer period
to return any results (almost linear graph).

Fig. 7 Graph showing the time needed to complete GA for 1000 generations

IX. CONCLUSIONS

Apparently, the GPU made a better work in
solving the TSP in all variations and with all
parameters than the CPU if we considered a big
population size as initial data, which take a long
time to calculate. For the small size population, we
can say that the CPU overpass the GPU in term of
time. This phenomenon caused by the delay of
write/read from the Graphic memory, every time
we want to write or read from the GPU memory we
have to have an equivalent amount of space in
RAM.

X. ANNEX

A. eil51_xy (51 cities):

TABLE VIIV
RESULTS FOR THE EIL51_XY

Population Generations AVG Time
CPU (ms)

AVG Time
GPU (ms)

10

10 51.6666667 218.333333

100 396.333333 1084.66667

1000 3812 9480

100

10 66.6666667 276.333333

100 498.5 1347.16667

1000 4914.33333 11787.6667

1000

10 200.666667 666.833333

100 1721.16667 2188.33333

1000 16937.5 17231.5

10000

10 3633 4451

100 35056 8777

1000 349076 53940

100000

10 266834 56513

100 1639040 229967

1000 *** ***

B. att48_xy (48 cities):

TABLE V

RESULTS FOR THE EIL51_XY

Population Generations AVG Time
CPU (ms)

AVG Time
GPU (ms)

10
10 48 250
100 408 1134.66667
1000 4021 9886.33333

100
10 62 272
100 500.333333 1291.16667
1000 4591.5 10889.8333

1000
10 191.666667 654.666667
100 1671.5 2199
1000 16232.1667 15841.1667

10000
10 3524 4468
100 34169 8733
1000 340358 53625

100000
10 267858 59638
100 1656540 223404
1000 *** ***

***: hardware cannot run the algorithm.

REFERENCES
[1] [1] Karl Menger, Ergebnisse eines Kolloquiums 3, 11-12 (1930).

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

[2] [2] Fan Yang, Solving Traveling Salesman Problem Using Parallel
Genetic Algorithm and Simulated Annealing, 2010.

[3] [3] Adewole Philip, Akinwale Adio Taofiki, Otunbanowo Kehinde, A
Genetic Algorithm for Solving Travelling Salesman Problem, in
International Journal of Advanced Computer Science and Applications,
2011.

[4] [4] S. N. Sivanandam, and S. N. Deepa. Introduction to Genetic
Algorithms. Springer, 2008.

[5] [5] Zdenˇek Konfrˇst, “Parallel Genetic Algorithms: Advances,
Computing Trends, Applications and Perspectives”, 18th International
Parallel and Distributed Processing, 2004.

[6] [6] E. Cant-Paz. Efficient and accurante parallel genetic algorithms.
Kluwer Academic Publishers, 2001.

[7] [7] A. E. Lefohn, S. Sengupta, J. O. E. Kniss, R. Strzodka, J. D. Owens,
Glift: Generic, Efficient , Random-Access GPU Data Structures, ACM
Trans. Graph., 25 (2006), no. 1, 60-99.

[8] [8] M. Mendez-Lojo, M. Burtscher, K. Pingali, A GPU Implementation
of Inclusion-based Points-to Analysis, ACM SIGPLAN Notices, 47
(2012), 107-116.

[9] [9] C.-H. Yang and K. E. Nygard, The Effects of Initial for Time
Constrained Population Traveling in Genetic Search Salesman
Problems, ACM, (1993), 378-383.

[10] [10] Y. Bartal, L.-A. Gottlieb, R. Krauthgamer, The Traveling
Salesman Problem: Low-dimensionality implies a polynomial time
approximation scheme, Proceedings of the 44th symposium on Theory
of Computing - STOC '12, (2012), 663-672.

[11] [11] P. Fekete, H. Meijer, Andre Rohe, W. Tietze, Solving a “Hard”
Problem to Approximate an “Easy” One: Heuristics for Maximum
Matchings and Maximum Traveling Salesman Problems, Chapter in
Algorithm Engineering and Experimentation, Springer Berlin
Heidelberg, 2001.

[12] [12] http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

