
A Model-Based Transformation Method to Design
PLC-Based Control of Discrete Automated

Manufacturing Systems
Yassine Qamsane∗, Mahmoud El Hamlaoui†, Abdelouahed Tajer∗ and Alexandre Philippot‡

∗LGECoS, ENSA, Cadi Ayyad University, Marrakech, Morocco
Email: qamsaneyassine@gmail.com, a.tajer@uca.ma

†SIME Laboratory, IMS Team, Mohammed V University, Rabat, Morocco
Email: mahmoud.elhamlaoui@gmail.com

‡CReSTIC, University of Reims Champagne Ardenne, Reims, France
Email: alexandre.philippot@univ-reims.fr

Abstract—In the domain of Automated Manufacturing Systems
(AMS), Supervisory Control Theory (SCT) is a general model-
based framework, which contributes to the automated devel-
opment of control systems. Although, SCT delivers important
theoretical insights to deal with controllers design, its use in
the industry is still weak, because of the discrepancy among its
abstract controllers and their physical implementation. Whithin
this context, this paper presents a practical method to automat-
ically produce distributed supervisory control of AMS in the
form of Grafcet, which is a graphical modelling tool widely
used to specify controllers dynamic behaviors. This method is
built to evaluate an authors’ previous distributed approach to
control synthesis and implementation. It is based on Model-
to-Model (M2M) transformations implemented in a java/EMF
environment. An experimental AMS illustrates its purposes.

Index Terms—Automated manufacturing systems, Model-
Driven engineering, control systems, Automation, PLC, Grafcet.

I. INTRODUCTION

Rigorous methods are becoming increasingly required for
the analysis, design, validation, implementation, control, and
optimization of large scale Automated Manufacturing Systems
(AMS). Supervisory Control Theory (SCT) initiated by Ra-
madge and Wonham (RW) [1], which is based on Discrete
Event System (DES) methods, is a promising technique for
the study of AMS. Typically, the SCT aims at synthesizing a
single monolithic supervisor that satisfies a legal specification
language of a target system. However, for large scale systems,
the computational complexity, which is due to the exponential
increase of eligible events constitutes a major drawback that
hinders the use of SCT methods in the industry. Numerous
divide-and-conquer approaches have been proposed in the
literature to deal with this issue. The modular approach see,
e.g. [2] aims at synthesizing small supervisors that satisfy
various individual specifications, rather than synthesizing a
single monolithic supervisor that satisfy all the specifications
together. The hierarchical approach see, e.g. [3] uses simplified
process models to develop high-level supervisors capable to
take overarching decisions. These are provided to the low level
supervisors that control the real process. The decentralized

approach see, e.g. [4] consists of dividing the global control
goal into several sub-goals, then, simultaneously execute the
resulting individual sub-supervisors to implement a solution
for the initial problem. The distributed approach see, e.g. [5]
divides a system into several interconnected subsystems. To
reach a global goal, the subsystems are required to share infor-
mation with each other. First, loosely Local Controllers (LCs)
are defined to control each subsystem individually. Second,
the LCs extchange information to cooperatively execute the
control actions.

Our recent research has focused on the distributed approach
because of its reduced complexity and implementation flexibil-
ity. Computational complexity is reduced through local control
design, and implementation flexibility refers to that a system
modification might be made only over the corresponding
subsystems, which results in updating only their corresponding
controllers. As a result, we proposed a distributed control
architecture [6], [7], [8], where the plant is modeled by
a set of local modular automata, and the control specifi-
cations are modeled by logical Boolean expressions. First,
LCs are designed by applying local control specifications to
their corresponding subsystems automata. Second, Distributed
Controllers (DCs) are obtained by applying global control
specifications also stated as logical Boolean expressions to the
corresponding LCs. The resulting DCs allow a nonblocking
optimal closed-loop behavior. Moreover, one important step
of our approach is the interpretation of the distributed control
into Grafcet for implementation purposes. Grafcet is an inter-
national standard [9] used for logic controllers specification
for AMS.

In this paper, we focus on the implementation issue. Ac-
tually, Programmable Logic Controllers (PLC) are imple-
mentation platforms widely used to perform control tasks in
practically all nowday’s modern industrial systems. Grafcet
is a well-known discrete event modeling tool used for logic
controllers’ specification for PLC programing purpose. The
main contribution here is to present a software solution, which
allows an automatic translation of a DC model into a Grafcet

Admin
Typewritten Text
4th International Conference on Automation, Control Engineering and Computer Science (ACECS - 2017)Proceedings of Engineering and Technology – PETVol.19, pp.4-11

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

one which respect the definitions of [9]. The method we
propose constitutes an intermediate phase between SCT-based
control, which is abstract, and the obtained Grafcet controller,
which is supposedly the executable concrete and precise PLC
program. I.e. it overcomes the problem of discrepancy between
the SCT abstract controller and its physical implementation.

Actually, with the advent of languages and tools dedicated to
Model-Driven Engineering (MDE) see, e.g [10], [11], Model
Driven Development (MDD) process can be more easily used.
MDE allows to consider models as data then use them as
first class entities in dedicated transformations. Our software
solution is based on methods from the software engineering
domain. It uses MDE terminologies for the development of
transformations written in with the Java EMF libraries .

The rest of this paper is structured as follows. Section 2
reminds the basic concepts of the distributed control synthesis
approach. Section 3 details the contribution of this paper
theoretically and technically. in Section 4 the proposed method
is illustrated using a case study. Finally Section 5 concludes
and draws perspectives.

II. FUNDAMENTAL CONCEPTS OF THE DISTRIBUTED
CONTROL SYNTHESIS APPROACH

This Section recalls the basic concepts of our formal
approach to distributed supervisory control synthesis. The
obtained control by using this shall be translated into Grafcet
using the method presented in this paper.

The control synthesis and implementation architecture [8] is
illustrated in Fig. 1. First, the operation potentially realizable
by the system is modularly modeled in the form of automata
based on its mechanical characteristics (sensors/actuators).
Each subsystem automaton model is called a Plant Element
(PE) [12]. The application of local constraints, modeled as
logical Boolean equations, to their corresponding PEs pro-
vides LCs. Second, the global constraints are applied to the
corresponding LCs, which allows the PEs to synchronize and
cooperate among each other through the obtained DCs. Third,
a model-checking technique is used to verify and validate
that the designed global control fulfills the required functional
properties like the deadlock-freeness and liveness properties.
Fourth, a straightforward method to the interpretation of the
DCs into Grafcet for PLC-based implementation purposes is
proposed.

This paper is focused on the fourth step of the approach. We
assume we have a DC model, the aim is to provide a software
that automatically transform it into Grafcet. The objective is
to assess AMS PLC-based control solutions.

III. SOFTWARE DESIGN AND IMPLEMENTATION

In this Section, we first recall the rules of transforming a
DC model into a Grafcet one. Then, the software design and
implementation steps are presented.

A. From DC model to Grafcet

The syntax and semantics of DCs automata are described
in more detail in [8]. A straightforward method for the

Sensor

signals
Control

actions

Sensors / Actuators

(2)

Global

control

synthesis

LC1 LC2 LCn
...

(1)

Local

control

synthesis

DC1 DC2 DCn
...

Local

safety and

liveness

constraints

O
ff

-l
in

e
sy

n
th

e
si

s
o
f

th
e

d
is

tr
ib

u
te

d
 c

o
n

tr
o
l

Control

System

(PLC)

Discrete Event

System

 (Plant)

S
u

p
er

v
is

o
ry

 c
o

n
tr

o
l

o
f

a
 D

E
S

(4)

Grafcet

interpretation
a) b)

Interpretation of the DCs

into Grafcet

DCs to Uppaal

model-checker
(3)

Deadlock

& liveness

verification

Ok

Not Ok
Nonblocking?

Liveness?

Global

safety and

liveness

constraints

PE1 PE2 PEn
...

Fig. 1. The proposed distributed supervisory control architecture.

a
a

a b

a

b

Elément du CD Interprétation en Grafcet id

1

2

3

Fig. 2. Rules for the DC simple evolutions transformation.

interpretation of DCs into Grafcet follows. The method is
based on the following rules:

• An ordinary state of a DC is represented by a step of
Grafcet;

• An uncontrollable event associated with a DC transition
is represented by a transition of Grafcet. The receptivity
associated with the Grafcet transition is defined as the
occurrence of the uncontrollable event;

• Macro-states have different configurations according to
the authorized and inhibited orders, and their monitoring
conditions, see Fig. 3;

• When an order is authorized and another is inhibited in a
same DC macro-state, the priority goes to the inhibition
i.e. one must disable the command already activated
before enabling the authorized one to ensure safety.

Altogether 11 interpretation rules have been defined to
ensure a correct transformation of the DCs into Grafcet, see
Figs. 2 and 3.

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

Fig. 3. Rules for the DC macro-states transformation.

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

Fig. 4. Transformation concept.

State

-name : Estring
-isActive :
Eboolean=false
-Ord : EString
-Inh : EString
-OrdIf : EString
-InhIf : EString

State

-name : Estring
-isActive :
Eboolean=false
-Ord : EString
-Inh : EString
-OrdIf : EString
-InhIf : EStringTransition

-event :
Estring

Transition

-event :
Estring

StateMachineStateMachine

CompositeStateCompositeState

PseudoStatePseudoState

InitialStateInitialState

[1..*]
transitions

[1..1] source

[1..1] target

[0..1]
container

[1..*]
states

[0..*] states

[0..1]
referencedState

[1..1]
initialState

Fig. 5. The DC metamodel.

B. Software design and implementation steps

To validate the approach, we are developing a software tool
using Eclipse [13], the open source platform of development,
considered as the main incubator of development projects by
the MDE community.

The software tool is an EMF-based transformation module.
EMF is an environment of modeling and code generation
facility for building tools and other applications based on a
structured data model. There are two reasons behind choosing
Java/EMF. First, because EMF is being used by several tools,
as it is the basis of all transformation languages, e.g. Model
to Model (M2M), Model to Text (M2T), Model Development
Tools (MDT). Second, using Java with EMF will enable
us to use object-oriented practices to structure our code.
Nevertheless, EMF lacks of a concrete syntax support. EMF
has only a tree editor that relies on the countenance structure
of metamodel elements. We shall soon fill this gap by using
other frameworks like, Xtext and GMF.

According to Fig. 4, our tool produces a Grafcet model by
taking the following artefacts as inputs: a DC metamodel, a
Grafcet metamodel and a DC model.

Fig. 5 describes the DC metamodel. It defines a concept
called StateMachine, which includes the set of states and the
set of state-transitions.

The metamodel represented in Fig. 6 illustrates the Grafcet
metamodel concepts. A Grafcet contains a set of elements.
An element is an abstract concept that can determine one
specialized step and transition.

State

-name : Estring
-isActive :
Eboolean=false
-Ord : EString
-Inh : EString
-OrdIf : EString
-InhIf : EString

State

-name : Estring
-isActive :
Eboolean=false
-Ord : EString
-Inh : EString
-OrdIf : EString
-InhIf : EStringTransition

-event :
Estring

Transition

-event :
Estring

StateMachineStateMachine

CompositeStateCompositeState

PseudoStatePseudoState

InitialStateInitialState

[1..*]
transitions

[1..1] source

[1..1] target

[0..1]
container

[1..*]
states

[0..*] states

[0..1]
referencedState

[1..1]
initialState

Fig. 6. The Grafcet metamodel.

Fig. 7. The experimental AMS.

IV. CASE STUDY DESIGN

As a case study, the methodology has been applied to an
industrial AMS (a workpieces sorting station), see Fig. 7. The
system identifies the color of entering workpieces and deposes
them onto one of three sliders according to their colors (black,
red or silver). It consists of a sensing module; a pneumatic
barrier; a conveyor belt; and two pneumatic cylinders in the
form of flippers. The conveyor belt actuated by a direct
current motor conveys the workpieces towards the sliders. The
pneumatic barrier blocks the workpieces at the entrance of
the station to identify their color and material. The pneumatic
flippers are used to select the sliders, where the workpieces
should be sorted. A set of sensors is used to detect the arrival
of workpieces, their color, and their material.

Even if at this stage of our tool development, we assume
we have DC models of a given system, and the aim is to
automatically generate their Grafcet interpretation, we present
nonetheless how these models are obtained by our approach.

A. Plant modelling

The sorting station comprises four PEs: two monostable
double-acting cylinders (Flippers), a single-acting cylinder
(Pneumatic barrier), and a conveyor. We do not explain the
construction of the PE models shown in Fig. 8. The reader
can find detailed explanations in our previous work [12].

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

Fig. 8. Plant models. (a) Barrier, (b) Conveyor, (c) Flippers.

TABLE I
LOCAL SAFETY AND LIVENESS CONSTRAINTS

PE Type Constraints

Conveyor

Safety ↑Conv And Not ↑wpa=0

Liveliness

↓wpa And ↓Conv =1

↑wpa And ↑Conv =1

↑Conv And ↓wpa =1

Flipperi (i=1,2)

Safety
↓Fli And Not ↑flia =0

↑Fli And ↑flir =0

Liveliness
↑Fli And ↓flia =1

↓Fli And↓flia =1

Fig. 9. Local controllers. (a) Barrier, (b) Conveyor, (c) Flippers.

B. Local safety and liveliness constraints

Local safety and liveness constraints restrict the PEs local
behaviors in order to avoid the subsystems local functioning
problems. Table I presents the local safety and liveness con-
straints to apply to the PEs of the sorting system. We note
that local safety and liveness constraints are obtained by a
system expert. For instance, the safety constraint “↑Conv And
Not ↑wpa = 0” reflects the fact that the conveyor should not
start (activate order “Conv”) if no workpiece is detected by
the sensor “wpa” in its input.

C. Local controllers

The application of the local constraints of Table I to the
corresponding PEs of Fig. 8 allows obtaining the LCs shown
in Fig. 9.

D. Global constraints

Global constraints allow a cooperative interaction among
the sorting station PEs. The global constraints to be applied

TABLE II
GLOBAL SAFETY AND LIVENESS CONSTRAINTS

id
If Then

C(spec) Ord(spec) Inh(spec)

1. red Fl1 ext

2. met Fl2 ext

3. blk+fl1a+fl2a Open barr

4. wpf Conv

5. wpf Open barr

6. wpf Fl1 ext

7. wpf Fl2 ext

↑wpa

↓wpa

↓fl1r ↑fl1a

↑fl1r ↓fl1a

If: blk+fl1a+fl2a

 (Inh:Open_barr)

(Ord:Open_barr)

If: wpf
 (Inh:)

(Ord:Conv)

 (Inh:Conv)

(Ord:)

If: wpf

s1 s2

s1

a)

d) c)

b)

s1

s4

↓fl2r ↑fl2a

↑fl2r ↓fl2a

s3

s2

 (Inh:Fl2_ext)
If: wpf

(Ord:)
(Ord: Fl2_ext)

If: met

 (Inh:)

s1

s4

s3

s2

(Ord:)

 (Inh:)

(Ord: Fl1_ext)
If: red

 (Inh:Fl1_ext)
If: wpf

Fig. 10. Distributed controllers. (a) Flipper1, (b) Flipper2, (c) Conveyor, (d)
Barrier.

to the considered PEs are stipulated in Table II.

E. Distributed controllers

The global constraints presented in Table II are applied
to the corresponding LCs according to the global control
synthesis algorithm previously presented in [8]. For example,
to establish the DC corresponding to the first flipper (Fig.
10(a)), the global constraints (1) and (6) from Table II are
applied to the flipper1’s LC (Fig. 9(c)). The constraint (1)
allocates the flipper1 to advance (activate order “Fl1 ext”)
when a red workpiece is detected (sensor signal “red”). The
condition “red” is then associated to the flipper1 LC (after
its aggregation), where the order “Fl1 ext” is authorized. The
constraint (6) allocates the flipper1 to retract (deactivate order
“Fl1 ext”) when a workpiece falls at one of the 3 sliders
(sensor signal “wpf”). The condition “wpf” is then associated
with the flipper1 LC (after aggregation), where the order
“Fl1 ext” is inhibited.

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

Fig. 11. Grafcet interpretation of the corresponding DCs. (a) Flipper1, (b)
Flipper2, (c) Conveyor, (d) Barrier.

F. Grafcet implementation

The final step of the approach is to interpret the obtained
DCs into Grafcet language according to the transformation
rules presented in Section III.A.

Fig. 11 presents the partial Grafcets corresponding to the
DCs of the studied system.

V. TOOL SUPPORT

In this Section, we show how the Grafcet models of the
studied system DCs have been produced with the software
tool support.

First, let us mention that the rules presented in Figs. 2 and 3
have been implemented in Java/EMF environment. The execu-
tion of the rules is defined in a method called Transformation
(), which uses directly or indirectly several developed methods.
In a general manner, the method loads both metamodels, the
state machine model and an empty Grafcet model. Fig. 12
shows an example of the implementation of rule 8 from Table
1 inside the transformation method. This rule describes the
creation of a Grafcet element. Second, we represent our DCs
models. In Fig. 13 (Appendix) we have created four different
models in a tree structure form representing the system’s
corresponding DCs. It is also possible to read each model in
a textual form. Fig. 14 (Appendix) shows a screenshot of the
four Grafcet models obtained from the previous DCs models
through our developed software tool. The results correspond
to what was expected in Section IV.F.

VI. CONCLUSIONS AND PROSPECTS

This paper presented a MDE method, which aims at
automatically generating distributed PLC-Based control of
AMS in the form of Grafcet. The objective is to support
control systems practitioners in realizing their control design
and implementation tasks, based on a formal method. The
approach was applied to an experimental AMS to evaluate

Fig. 12. Transformation function

its applicability and feasibility. Nevertheless, let us mention
that other functionalities are still under development. Further
development stages will emphasize on refining the tool by:
(i) considering the DC design step based on a library of
manufacturing components models and interfaces to formally
specify the control specifications; and (ii) taking into account
the graphical representation of the resulting Grafcet.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[2] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” Mathematics of control, signals and systems,
vol. 1, no. 1, pp. 13–30, 1988.

[3] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-event
systems,” Discrete Event Dynamic Systems, vol. 6, no. 3, pp. 241–273,
1996.

[4] L. Feng and W. M. Wonham, “Supervisory control architecture for
discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 53, no. 6, pp. 1449–1461, 2008.

[5] H. Hu, R. Su, M. Zhou, and Y. Liu, “Polynomially complex synthesis
of distributed supervisors for large-scale amss using petri nets,” IEEE
Transactions on Control Systems Technology, vol. 24, no. 5, pp. 1610–
1622, 2015.

[6] Y. Qamsane, A. Tajer, and A. Philippot, “Synthesis and implementation
of distributed control for a flexible manufacturing system,” in Complex
Systems (WCCS), 2014 Second World Conference on. IEEE, 2014, pp.
323–329.

[7] ——, “Distributed supervisory control synthesis for discrete manufactur-
ing systems,” IFAC-PapersOnLine, vol. 49, no. 12, pp. 396–401, 2016.

[8] ——, “A synthesis approach to distributed supervisory control design
for manufacturing systems with grafcet implementation,” International
journal of Production Research, pp. 1–21, September 2016.

[9] IEC, “60848, grafcet specification language for sequential function
charts,” 2013.

[10] M. Didonet Del Fabro and P. Valduriez, “Towards the efficient devel-
opment of model transformations using model weaving and matching
transformations,” Software and Systems Modeling, vol. 8, no. 3, pp. 305–
324, 2009.

[11] Z. Drey, C. Faucher, F. Fleurey, V. Mahé, and D. Vojtisek, “Kermeta
language,” Reference Manual, 2009.

[12] A. Philippot, M. Sayed-Mouchaweh, and V. Carré-Ménétrier, “Modelling
of a discrete manufacturing system by parts of plant,” IFAC Proceedings
Volumes, vol. 42, no. 4, pp. 343–348, 2009.

[13] Eclipse, “2011. java emitter templates,”
http://www.eclipse.org/modeling/m2t/?project=jet, 2011.

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

APPENDIX : INPUT/OUTPUT OF THE TOOL

Fig. 13. DCs input models

Fig. 14. Grafcet models produced by the tool support

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

