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Abstract— In this paper we presentan application of the adaptive 

multivariable Generalized Predictive Control (AMGPC) 

approach with measurable disturbances presence. The 

(AMGPC) which mixes the method of scheme identification using 

recursive least-squares with forgotten factor (FFRLS) algorithm 

and the scheme of generalized predictive response control design, 

has been presented and efficiently applied. The proposed method 

was verified by simulation of a microclimate greenhouse inside 

temperature and humidity control. The achieved results show 

that the AMGPC with disturbance deliver improved behaviour 

that standard techniques. 
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I. INTRODUCTION 

A greenhouse is a remarkably outlined farmstead structure 

building to give a more controllable microclimate to improved 

crop production, harvest security, product planting and 

seeding. Also, the accessible space of area for developing 

yields has been overall increasing, following to more space of 

area is dynamically utilized for covering and marketable 

ventures as a part of this present day period. Therefore, to 

improve profitability, we must grow crops in optimal 

environments, by controlling the air temperature, humidity, 

and CO2 level. All these factors must be considered in the 

energy balance, because each can influence other.  

This study enters in a contribution to the development of 

the greenhouse driving by using a generalized predictive 

control (GPC) approach ([1, 2].). Adaptive control can be seen 

as an automation of plant modeling and controller design in 

which the dynamical behavior and controller are updated 

during each sampling period. However, the adaptive GPC, 

which combines the process of system identification using 

recursive least-squares (RLS) algorithm described in ([3, 4].). 

And the process of generalized predictive feedback control 

design, has been presented and successfully implemented in 

real time. 

This paper is structured in four chapters. After this general 

introduction, section 2, deals in its first part on the general 

modelling of the greenhouse, section 3 presents the adaptive 

multivariable controller combined with GPC strategy. Section 

4 illustrate the parametric estimation of the greenhouse 

environment by the identification method based on the 

criterion of least squares recursive forgetting factor (FFRLS) 

asanalysed in ([5].). The last part of this thesis includes the 

simulation results with an overall conclusion and outlook of 

the thesis. 

II. SYSTEM MODELLING 

As shown in Fig. 1.we show the main physical variables 

cited in ([6].) used for modelling the experimental greenhouse. 

 

 

Fig. 1Schematic diagram of controlled greenhouse 

With: 

Rc: heating energy applied to the plant (KW). 

Vt: ventilation angle outside the greenhouse (°degree) 

To,Ho: air temperature and relative humidity outside the 

greenhouse   (° C,%). 

Sr: Solar radiation (W / m²). 

Ti,Hi: air temperature and relative humidity inside the 

greenhouse(° C,%). 

Sw: wind speed outside the greenhouse (km/h). 

Assuming that the greenhouse climate can be described by 

a linear system around an operating point, the differential 

equations describing the dynamic behaviour of the greenhouse 

are  

 
𝑑𝑇𝑖

𝑑𝑡
=  𝛼1 + 𝛼2. 𝑂𝑣  𝑇𝑒 − 𝑇𝑖 + 𝛼3. 𝑅𝑐 + 𝛼4. 𝑆𝑟 + 𝛼5(1) 

𝑑𝐻𝑖

𝑑𝑡
=  𝛽2. 𝑉𝑣  𝐻𝑒 − 𝐻𝑖 + (𝛽3 + 𝛽4. 𝑅𝑦). ∆𝐻𝑖 + 𝛽5(2) 
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These differential equations are substituted by discrete 

model.  

 
𝑇𝑖(𝑘 + 1)
𝐻𝑖(𝑘 + 1)

 =

 
𝑎11 𝑎12
𝑎21 𝑎22

  
𝑇𝑖(𝑘)
𝐻𝑖(𝑘)

 +  
𝑏11 𝑏12
𝑏21 𝑏22

  
𝑅𝑐 𝑘 
𝑉𝑡(𝑘)

 +

 
𝑑11 𝑑12 𝑑13 𝑑14
𝑑21 𝑑22 𝑑23 𝑑24

  

𝑇𝑜(𝑘)

𝐻𝑜(𝑘)
𝑆𝑟(𝑘)

𝑆𝑤(𝑘)

  (3)         

III. GENERALIZED PREDICTIVE CONTROL 

Let the controlled process to be an m-input, n-output linear 

system which can be described by a discrete CARIMA model. 

(Controlled Auto-Regressive Integrated Moving Average) 

process model as described in([7].) 

𝐴 𝑞−1 . 𝑦 𝑡 = 𝐵 𝑞−1 . ∆𝑢 𝑡 + 𝐷 𝑞−1 𝑑𝑝 𝑡   (4)                   

Where 

𝑦(𝑡)is the measured system output,  

𝑢(𝑡)is the system input, 

𝑑𝑝(𝑡)is the disturbance measurement.  

t is the discrete time iteration expressed as an integer multiple 

of the sampling interval. 

Δ =  1 − 𝑞−1is the delay operator. 

𝐴 𝑞−1 and𝐵 𝑞−1 are polynomial matrices in the backward 

shift operator 𝑞−1  such that 𝐵(0) =  0 and 𝐴(0)  =  𝐼, with 𝐼 

being the m × m identity matrix.  

𝐷 𝑞−1 is a disturbance parameter matrix. 

the system model can be described as 

𝑦 𝑡 =
 −𝑎𝑖𝑦 𝑡 − 𝑖 +𝑛𝑎

𝑖=1  −𝑏𝑖𝑢 𝑡 − 𝑖 +  −𝑑𝑖𝑑𝑝 𝑡 − 𝑖 𝑛𝑑
𝑖=1

𝑛𝑏
𝑖=1                                                                

(5) 

 

This predictor of the output y is particularly simple to 

calculate because it defines a linear regression which is 

usually written as: 

𝑦  𝑘 = 𝜑𝑇 𝑘 . 𝜃  𝑘                   (6) 

The vector 𝜃  𝑘  contains the parameters of the greenhouse 

that we must predict, And the variable, 𝜑  is called the 

regression variable. 

With  

𝜑𝑇 𝑘 − 1 =  −𝑦 𝑘 − 1 , … , −𝑦 𝑘 − 𝑛𝑎  , −𝑢 𝑘 −

𝑛𝑏,…,−𝑢𝑘−𝑛𝑏,…,𝑑𝑝(𝑘−𝑛𝑑)]         (7) 

𝜃  𝑘 =  𝐴 1 𝑘 , … , 𝐵 𝑛𝑏  𝑘 …𝐷 𝑛𝑏  𝑘         (8) 

    Since the parameters of the model change slowly, we use 

the method of recursive least squares with exponential 

Forgetting factor. From equation (6) we try to minimize the 

following criterion  

𝜃  𝑘 = 𝐴𝑟𝑔𝑚𝑖𝑛  𝜆𝑘−𝑖𝑘
𝑖=1 (𝑦 𝑘 − 𝜑𝑇 𝑘 . 𝜃  𝑘 )²  (9)  

The model parameters can be recursively estimated using the 

FFRLS algorithm as  

𝜃  𝑘 = 𝜃  𝑘 − 1 + 𝐾(𝑘)[𝑦 𝑘 − 𝜑𝑇 𝑘 . 𝜃  𝑘 − 1 ]  (10) 

Where the correcting factor, 𝐾(𝑘)  is                                                                                                                          

𝐾(𝑘) = 𝑃(𝑘 − 1)𝜑(𝑘)/𝜆 + 𝜑𝑇 𝑘 𝑃(𝑘 − 1)𝜑(𝑘)   (11) 

And  

𝑃 𝑘 =
1

𝜆
(𝑃 𝑘 − 1 − 𝐾(𝑘)𝜑𝑇 𝑘 )                (12) 

Consider the cost function as proposed by Clarke (1987) of 

the following form: 

𝐽 =  (𝑤 𝑘 + 𝑗 − 𝑦 (𝑘 + 𝑗))² + 𝜆

𝑁2

𝑁1

 (Δ𝑢 𝑘 + 𝑗 − 1 )²

𝑁𝑢

1

 

Where: 

Δ𝑢 𝑘 + 𝑗 − 1  : weighted sequence of the future control 

input increments obtained from the minimization of the finite 

horizon quadratic criterion. 

N1, N2: minimum and maximum prediction horizons for 

the scalar output 𝑦𝑗. 

Nu: is the control horizon over all future inputs 𝑢𝑗, 

𝜆: weighting factor of the control increment. 

𝑤 (𝑡 + 𝑗) : Future set-point sequence applied at time t+j. 

𝑦 (𝑡 +  𝑗) : Output predicted at time t+j. 

Δ𝑢 (𝑡 +  𝑗 − 1): Increments of command on channel i at 

time t + j-1. 

Where the Diophantine equation is used  

𝐼𝑚 = 𝐸𝑗𝐴∆ + 𝑞−𝑗𝐹𝑗      (13) 

Let 𝐸𝑖, 𝐹𝑗the unique pair solution of Diophantine equation 

𝐸𝑗 = 𝐸0
𝑗

+ 𝐸1
𝑗
𝑞−1 +. . +𝐸𝑗−1

𝑗
𝑞−𝑗+1      (14) 

𝐹𝑗 = 𝐹0
𝑗

+ 𝐹1
𝑗
𝑞−1 +. . +𝐹𝑛𝑎

𝑗
𝑞−𝑛𝑎     (15)                        

Using the solution of the first Diophantine equation, in 

equation (13) leads to 

𝑦 𝑘 + 𝑗 = 𝐹𝑗𝑦 𝑘 + 𝐸𝑗𝐵∆𝑢 𝑘 + 𝑗 − 1 + 𝐸𝑗𝑒(𝑘 + 𝑗)(16) 

The optimum prediction at time 𝑦 (𝑘 +  𝑗),  

𝑦  𝑘 + 𝑗 = 𝐹𝑗𝑦 𝑘 + 𝐸𝑗𝐵∆𝑢 𝑘 + 𝑗 − 1     (17) 



4th International Conference on Automation, Control Engineering and Computer Science (ACECS - 2017) 

Proceedings of Engineering and Technology – PET 

Vol.19, pp.100-103 

Copyright IPCO-2017 

ISSN 2356-5608 

The term E may be separated by a second Diophantine 

equation in 𝐺𝑗  and 𝐻𝑗   as follows: 

𝐸𝑗𝐵 = 𝐺𝑗 + 𝑞−𝑗𝐻𝑗            (18) 

𝐺𝑗 = 𝐺0
𝑗

+ 𝐺1
𝑗
𝑞−1 +. . +𝐺𝑗−1

𝑗
𝑞−𝑗+1   (19) 

𝐻𝑗 = 𝐻0
𝑗

+ 𝐻1
𝑗
𝑞−1 +. . +𝐻𝑛ℎ

𝑗
𝑞−𝑛𝑎 (20) 

 

The matrices G and H are polynomials of dimension m × 

m;we get 

𝑦  𝑘 + 𝑗 = 𝐺𝑗∆𝑢 𝑘 + 𝑗 − 1 + 

𝐻𝑗∆𝑢 𝑘 − 1 + 𝐹𝑗𝑦(𝑘)    (21) 

And which considers the following quantities: 

 

𝐹𝑐 =

 
 
 
 
 
 

𝐻𝑁1
∆𝑢 𝑘 − 1 + 𝐹𝑁1

𝑦(𝑘)

𝐻𝑁1+1∆𝑢 𝑘 − 1 + 𝐹𝑁1+1𝑦(𝑘)

𝐻𝑁2
∆𝑢 𝑘 − 1 + 𝐹𝑁2

𝑦(𝑘)  
 
 
 
 
 

           (22) 

For 𝑗 =  𝑁1 …𝑁2 we have, 

𝑦  𝑘 + 𝑗 =

 
 
 
 
 

𝑦 1 𝑘 + 𝑗 

𝑦 2 𝑘 + 𝑗 

𝑦 𝑚 𝑘 + 𝑁2  
 
 
 
 

(23) 

With  

𝑈 =

 
 
 
 
 

Δ𝑢(𝑘)

Δ𝑢(𝑘 + 1)

Δ𝑢(𝑘 + 𝑁𝑢 − 1) 
 
 
 
 

     (24) 

We can then write the equation (20) for𝑁1 < 𝑗 < 𝑁2 , in 
the form: 

𝑌 = 𝐺𝑈 + 𝐹𝑐       (25) 

With 𝐺𝜖ℝ𝑚 (𝑁2−𝑁1+1)×𝑚𝑁𝑢  

 

𝐺 =

 
 
 
 
 
 
 
𝐺𝑁1−1 Λ 𝐺0 Λ Λ 0

𝐺𝑁1
𝐺𝑁1−1 Λ 𝐺0 Λ 0

𝑀 𝑀 0 0 0 𝑀
𝐺𝑁𝑢−1 𝐺𝑁𝑢−2 𝐺𝑁𝑢−3 Λ Λ 𝐺0

𝑀 𝑀 𝑀 𝑀 𝑀 𝑀
𝐺𝑁2−1 𝐺𝑁2−2 𝐺𝑁2−3 Λ 𝐺𝑁2−𝑁𝑢 +1 𝐺𝑁2−𝑁𝑢  

 
 
 
 
 
 

 

 

The system output prediction sequence, 𝑌  given by 

equation (21) can be used in the cost function, which 

subsequently yields 

𝐽 =  𝑌 − 𝑊 
𝑇
 𝑌 − 𝑊 + 𝑈 𝑇ΛU    (26)              

With  

Λ =

 
 
 
 
 
 
 
 
 
 

𝜆1 . . 0
. . . .
. . . .
0 . . 𝜆𝑚

 

1

0

0  

𝜆1 . . 0
. . . .
. . . .
0 . . 𝜆𝑚

 

𝑁𝑢  
 
 
 
 
 
 
 
 

         (27) 

 And the optimal control([8].)applied to the system at time t 

is: 

u𝑜𝑝𝑡  𝑘 = 𝑢 𝑘 − 1 + Δ𝑢𝑜𝑝𝑡 (𝑘)       (28)                      

With  

Δ𝑢𝑜𝑝𝑡  𝑘 =  𝑀1(𝑊 − 𝐹𝑐)    (29) 

𝑀1𝜖ℝ
𝑚×𝑚(𝑁2−𝑁1+1) represents the first 𝑚  rows of the 

matrix M. 

IV. RESULTS AND DISCUSSIONS 

In this section, the performance of the adaptive controller 

associated with the GPC controller is applied to control the 

microclimate of a greenhouse with the presence of external 

disturbance inputs([9].). The following tests represent 

variations of humidity and temperature set points in the 

greenhouse process. In over-all, each trial track can be 

separated into three sequential phases. Through the first, start-

up phase the system plant is achieving steady state around the 

operation points. The second one is a suitably chosen 

identifying phase using acquired data, which gives us an 

initial estimation of CARIMA model parameters. The third 

phase finally displays the results of the adjusted multivariable 

adaptive GPC controller. 

Several of real-time tests had been simulated in order to 

choice parameters that would offer the desired controller 

performance([10, 11].). As a final point, the succeeding values 

of design parameters were set: sampling times T = 1.5 s, 

horizons N1 =1, N2 = 15, Nu = 3, dead time d = 1, and 

weights [𝜆1, 𝜆2] = [0.95, 0.9]. 
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Fig. 2Measurement data respectively for solar radiation and speed wind 

 

 
Fig. 3 The online estimation of the greenhouse’s parameters  

Fig. 4 Measurement data respectively for Outside Air Temperature and 

relative Humidity 

 

Fig. 5 Measured and simulated responses of the greenhouse air temperature 

and relative humidity 

 

Fig. 6Responses of greenhouse air temperatures and relative humidity using 

the ALQG controller. 

 
Fig. 7The input control of the greenhouse with the AMGPC controller. 

V. CONCLUSION  

In this paper, an adaptive multivariable controller joined 

with GPC control scheme with measurable disturbances has 

been presented. The results simulations described in this work 

show that we have developed the useful aspects of the 

proposed control algorithm through a case study concerning 

air temperature and relative humidity control within a 

microclimate greenhouse. Moreover, the AMGPC technique 

will be implemented and tested not only for greenhouse 

temperature and humidity control, but also for air CO2 

concentration control. 
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