
The reconciliation of external and internal quality

attributes of ISO using the OO quality concepts
Zineb BOUGROUN, Mohammed SABER and Toumi BOUCHENTOUF
Electronic, Computer and Image Systems Research Laboratory (LSE2I),

National School of Applied Sciences (ENSAO), Mohammed first university (UMP)

60050 Oujda, Morocco
Bougroun.zineb@gmail.com, mosaber@gmail.com, tbouchentouf@gmail.com.

Abstract— Problem statement: The IT project assessment issue

has been much studied to improve the quality in order to reduce

the maintenance cost. In this area, to present software quality,

many models have appeared, among which ISO 25000. In other

side, to evaluate software quality, several metrics have appeared.

The two axes do not have a clear link to assert a complete

evaluation.

Approach: In this paper, we present the main classifications;

especially, our approach based on OO programming properties.

What we have done to know all the characteristics evaluated by

the metrics. Then we applied these properties on the ISO 25000

model in order to reconcile internal and external quality

attributes. To validate our work we conducted a survey, answered

by experienced developers and analysts in the OO.

Results: The result of the survey shows a strong correlation

towards our approach.

Keywords— metrics, properties of OO programming, quality

model, ISO 25000, internal quality attributes, external quality

attributes.

I. INTRODUCTION

Maintenance and enhancement of software products

consume a major portion of the total life cycle cost. Rough

estimates shows that each category of maintenance consumes a

range as high as 75-80 percent of whole project programming

resources. Maintenance and enhancement tend to be viewed by

management as at least somewhat more important than new

application software development, that why we must give more

attention to this phase of life cycle.

To reduce the cost of software maintenance, it is essential to

care about the quality of software. For measuring this quality,

several metrics have emerged to assess it [1-5]. Moreover,

several model are appeared to present the software quality [6,

7]. Our research is included in this aspect, focusing on measures

and quality model applied to object-oriented systems.

The internal quality attributes are presented in the literature

by the quality metrics. Which developers use to know the

quality level of their source code. The internal quality

attributes, are structured in various models, used to present the

quality of the final product and to market it. These two axes,

despite being connected, this relationship was not explicitly

formulated to give a clear and precise evaluation way.

Our work in this paper consists in bringing together the two

axes of research: attributes of external quality and attributes of

internal quality.

In order to perform this work we classify the metrics

according to quality properties of object-oriented

programming. Then we applied this classification to the ISO

25000 model. And, we validated this work by a survey replied

by the developers and the researchers experienced in the field.

This paper is composed as follows: the first section shown

the state of metrics classification, the second present our

approach to classify metrics, thereafter we explain how we

reconciled the internal and external quality attributes of ISO

25000, then we present the survey achieved in this context.

II. STATE OF ART OF METRICS CLASSIFICATION.

A. Classification by kind

This classification divides metrics into two parts: traditional

and oriented object.

Traditional [12]: This kind of metrics is applied in the

methods of a class. Two types of traditional metrics are

described in this section: cyclomatic complexity and size.

Object-oriented [11,13]: Since the appearance of the

object-oriented paradigm, various metrics that have been

developed deal the principles of OO programming. They apply

mainly to the concepts of class: coupling, cohesion, size and

inheritance. Chidamber & Kemerer introduced these metrics in

1994 when the six metrics of the Moose project were invented.

B. Classification by level

Several researchers have adopted this classification [14].

Sheetz [15] has defined four levels of classification: the

variable level, the level of the method, the level of the object,

and the level of application. It has adopted its own metrics for

each level.

However, Henderson [16] considered Object Oriented

perspectives :

 Interclass level: we find in this level the size and

complexity measurements.

 Level of the class: concerns the interface of the classes,

the metrics of this level can be considered as measures of

the services offered by the class.

 System level (ignoring relationships): measurements

from the previous two levels are accumulated at this

level. Such as the size of the system.

 Level of relations system (excluding inheritance):
coupling is the main measure in this level.

 Inheritance level: In this level we find the measures of

the inheritance hierarchy of a system and the resulting

complexity.

mailto:Bougroun.zineb@gmail.com
mailto:mosaber@gmail.com
mailto:tbouchentouf@gmail.com
Admin
Typewritten Text
4th International Conference on Automation, Control Engineering and Computer Science (ACECS - 2017)Proceedings of Engineering and Technology – PETVol.19, pp.52-55

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

C. Classification of Gurdev, Dilbag and Vikram Singh

In this classification, the Singh brothers [17] showed the two

types of metrics: process and product.

Process metrics are known as management measures, used to

measure the properties of the production process.

Product metrics are quality measures, used to measure the

properties of software. This type was presented in two

categories:

Metric static: groups metrics statically applied to a class or

its components. Among which we find the metrics of size,

design (Singhs put here the metrics of Halstead), flow control

(or else the metrics of complexity), information (contains the

metric of Henry and Kafura), weighting (based on the Halstead

Singhs defined this metric) and data structure metrics (CK

metrics).

Dynamic metric: this type of metrics is applied to objects

and not to classes. Singhs have not given a true definition to

this type of metric that has not been treated sufficiently.

Despite the structuring of the latter classification, it is rather

based on metrics and not concepts and needs to be clarified.

III. OUR APPROACH OF METRICS CLASSIFICATION

Viewing the enormous use of object-oriented programming,

and in order to organize the number of metrics developed by

researchers as well as developers, we propose a classification

by concepts of object-oriented programming. We also integrate

into this catalog the principles of good practices of

programming such as naming conventions, documentation and

the number of parameters.

Our metric classification focuses on static product metrics.

Nevertheless, we have also presented the other types of

measurements in order to have a general classification scheme

of measurements. (see figure 2)

Two sets of software measurements are required in a

software measurement taxonomy:

The process measures, essentially developed to estimate the

budgetary cost of a project, the execution time and the flow of

information.

The second family concerns product measures, which in turn

encompasses several categories:

Dynamic metrics: this type of metric is applied to objects and

not to classes.

Static metrics are metrics applied to a component.

Metrics element includes all metrics that we apply in

method, namely : size metrics (number of elements, number of

lines of code in the element, number of comment lines, etc.),

information metrics (The number of empty lines, as well as the

bad smells), convention metrics (checking the method and

attribute name, number of parameters, etc.) and complexity

metrics.

Class metrics: inheritance metrics (NOC number of

descending classes, DIT depth of inheritance), coupling metrics

(coupling efferent, coupling afferent ...), cohesion (LCOM),

encapsulation (number of public / private data ...),

polymorphism (number of polymorphic methods,

polymorphism factor ...) and messaging (RFC).

Component metrics contains all metrics that we apply to

package, namely dependency metrics (RMI dependencies

between packets, dependency cycle), instability metrics (the

instability metric is interested to liability / Independence) and

those of modularity (the specialization index).

Fig. 2. Our approach to classify metrics using concepts of OO

programming.

IV. APPLICATION OF THE CLASSIFICATION TO THE

CHARACTERISTIC “MAINTAINABILITY” OF ISO 25000

The metrics, posed by the models in their base layer, are not

clearly defined and there is not a precise method for choosing

the sufficiency number used metric.

The reason why, we have applied the classification by

concepts on the ISO 25000 model. Thus, make the model with

four layers, an intermediate layer between the metrics and sub-

characteristics.

So, the main factor that interests us is that of maintainability.

However, the efficiency with respect to time behaviour is

strongly related to, the number of objects created and the

connection between them, the dynamic metrics.

Also, abstraction and encapsulation play an important role

for privacy and data immunity.

Measuring the ease of testing amounts to giving the number

of possible test cases in a given code. It is therefore a question

of testing all the possible paths in this software, which are

established by complexity (McCabe metric in a procedural

code, WMC in the OO).

The ease of analysis is explained by a non-complex code.

The complexity concerns the number of paths in a program, the

size of a program and the possible interactions between

elements of program. This translates into terms of concepts by:

complexity, size, coupling, dependency, inheritance,

information and convention measures.

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

The ease of modification: code is easy to modify if they are

not a dependency between the code to be modified and the rest

of the application. This translates into the object oriented by

strong cohesion and weak coupling. Nevertheless, a strong

cohesion complicates the change in a class, and then we use the

metrics of complexity and size. As a result, we use the concepts

of size, complexity, inheritance, coupling and dependence.

Fig. 3. Applying concepts into maintainability characteristics.

The stability of a software is the results of the stability of its

components. Thus, a class must be cohesive and less coupled.

A packet must have minimal dependency with other packets.

Modularity is measured by the interdependence of

components application. In terms of concepts, it contains:

coupling, dependence, instability, cohesion and index of

specialization.

The stability of the modification is a characteristic that

allows to measure the risks of a modification. So if the change

is for a block that has no dependencies, the change will have no

risk. So the concepts that concern these parameter are:

coupling, dependence, instability, cohesion and specialization

index.

V. SURVEY OF CLASSIFICATION OF METRICS AND THE

RELATIONSHIP BETWEEN INTERNAL QUALITY ATTRIBUTES

AND QUALITY MEASURES

To be able to confirm the concepts already mentioned in the

previous section, we aim to use a questionnaire. Which is

composed of four parts:

 Profile,

 Expertise,

 The maintenance and OO concepts,

 External attributes and quality concepts.

The first part of the questionnaire is linked to the profile

of the participants (figure 4). The figures show the results of

profile responses. The questionnaire participants came from

academia and industry with a more or less equitable percentage.

The second part of the questionnaire concerns the

participant expertise in object-oriented programming and

maintenance (figure 5). For the measurement of expertise, three

levels were adopted: low level (0-6 months), average level (> 6

months to 2 years), and high level (> 2 years).

The results of this section show that half of the participants

have good experience in maintenance and object-oriented

programming.

Fig. 4. Profile survey respondents.

Fig. 5. Expertise of survey respondents.
The third part of the questionnaire concerns the concepts

that make problems in maintenance.

Respondents believe that size measures, complexity,

conventions and information are very important for the

maintenance of a method. The maintenance of a class also

includes coupling, inheritance, encapsulation, cohesion, flow

control and polymorphism. Component maintenance

difficulties depend on size, complexity, conventions and

information measures as well as dependence.

The last part of the questionnaire concerns the relationship

between external attributes and quality concepts presented by

figure 6, 7, 8 and 9. In this section, we have listed the external

quality attributes of the ISO 25000 model, and we have left the

choice to the respondents to designate the quality concepts that

help to highlight the attribute in question. We also gave the

respondent a hand to add other concepts to the external

attributes.

The results of this part of the survey are categorically close

to our approach.

VI. Conclusion

In this paper, we have described our classification of metrics

according to the concepts of OO programming and some

concepts of conceptions and good practices. Therefore, an

application of this taxonomy allows us to know if the number

Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

of metrics used is sufficient to conclude that the product is of

good quality. And, we applied our metric classification

approach to the ISO 9126 and ISO 25000 model in order to link

the metrics to the quality factors / criteria.

In addition, to compare our approach with that of developers

and researchers, we conducted a survey that included questions

to learn about quality concepts that pose maintenance difficulty

and questions to link external quality attributes And quality

concepts. The result of this survey is categorically close to our

study.

Fig. 6. Result of the concepts posing a difficulty in analysis.

Fig. 7. Result of the concepts posing a difficulty in modification.

Fig. 8. Result of the concepts posing a difficulty in testability.

REFERENCES

[1] N.I. Churcher and M.J. Shepperd. Comments on : 'a metrics suite for

object oriented design'. IEEE Transactions on Software Engineering,
March1995.

[2] S.R. Chidamber and C.F. Kemerer. Authors' reply to : 'comments on : A

metrics suite for object oriented design'. IEEE, March 1995.
[3] W. Li and S. Henry. Object-oriented metrics that predict maintainability.

Journal of systems and software, 1993.

[4] W. Li, S. Henry, D. Kafura, and R. Schulman. Measuring object-
oriented design. Journal of Object Oriented Programming, 1995.

[5] F. Brito e Abreu and W. Melo. Evaluating the impact of object-oriented
design on software quality. March 1996. IEEE

[6] ISO, International Organization for Standardization (2001), "ISO 9126-

1:2001, Software engineering - Product quality, Part 1: Quality model".
[7] ISO, International Organization for Standardization (2005), "ISO 25000,

Software engineering - software product quality requirement and

evaluation ".
[8] Maurice H. Maurice Howard Halstead. Elements of software science.

Operating and programming systems series. Elsevier, New York, 1977.

Elsevier computer science library.
[9] Thomas J. McCabe and Charles W. Butler. Design complexity

measurement and testing. Commun. ACM, 32(12):1415_1425,

December 1989.
[10] T. McCabe, L. Dreyer, A. Dunn, and A.Watson. Testing an object-

oriented application. Quality Assurance Inst., 8(4) :21_27, October 1994

[11] LE Hyatt LH Rosenberg. Software quality metrics for object-oriented
environments. Crosstalk journal, 1997.

[12] D. E. Monarchi D. P. Tegarden, S. D. Sheetz. Effectiveness of traditional

software metrics for object-oriented systems. In Proceedings : 25th
Hawaii International Conference on System Sciences, volume 4, pages

359 _ 368, 1992.

[13] Bin-Shiang Liang Yen-Sung Lee and Feng-Jian Wang. Some
complexity metrics for object-oriented programs based on information

flow : A study of c++programs. Journal of Inforamtion Science and

Engineering, 10(1), 1994.
[14] J. Abounader and D. Lamb. A data model for object-oriented design

metrics. Technical report, Queen's University, Kingston, ON., 1997.

[15] Steven D. Sheetz, David P. Tegarden, and David E. Monarchi.
Measuring object-oriented system complexity. In In Proc. 1st Workshop

in IT and Systems, 1991.

[16] Brian Henderson-Sellers. Identifying Internal and External
Characteristics of Classes likely to be useful as Structural Complexity

Metrics, pages 227_230. Springer London, London, 1995.

[17] Vikram Singh Gurdev, Dilbag. A study of software metrics. IJCEM
International Journal of Computational Engineering & Management,

2011.

[18] J McCall. Factors in Software Quality : Preliminary Handbook on
Software Quality for an Acquisiton Manager, volume 1-3. General

Electric, November 1977.
[19] Barry W. Boehm, John R. Brown, and Hans Kaspar. Characteristics of

Software Quality. Vol. 1. TRW series of software technology. North-

Holland Publishing, Amsterdam, New York, 1978.
[20] ISO/IEC. ISO/IEC 9126. 9126-1 software engineering -product quality

part1 Quality model. ISO/IEC, 2001.

[21] ISO/IEC. ISO/IEC 9126. 9126-2 software engineering -product quality
Part 2 _ External metrics. ISO/IEC, 2001.

[22] ISO/IEC. ISO/IEC 9126. 9126-3 software engineering -product quality

part 3 _ Internal metrics. ISO/IEC, 2003.
[23] Alain Abran , Rafa E. Al-Qutaish , Jean-Marc Desharnais and Naji

Habra, ISO-BASED MODELS TO MEASURE SOFTWARE

PRODUCT QUALITY, Jan 2014 · Journal of Web Engineering (JWE)
[24] ISO/IEC 25000, International Organization for Standardization (2008),

"ISO 25000, Software engineering - software product quality

requirement and evaluation ". web site :
miageprojet2.unice.fr/@api/deki/files/2222/=ISO_25010.pdf

Fig. 9. Result of the concepts posing a difficulty in reuse.

mailto:miageprojet2.unice.fr/@api/deki/files/2222/=ISO_25010.pdf
Admin
Typewritten Text
Copyright IPCO-2017ISSN 2356-5608

