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Abstract—The image representation in separable orthogonal 

bases cannot take advantage of geometrical regularity of image; 

which when explored efficiently improves the state of image 

compression. In this paper, we propose to experiment and 

compare an adaptive multiscale geometric decomposition for 

Synthetic Aperture Radar (SAR) image compression, called 

multiscale bandelets transform and an non adaptive multiscale 

geometric representation called Ridgelet transform. The second 

generation bandelets transform adopted in this work, is 

constructed in discrete domain with bandeletization of wavelet 

transform along the optimal direction of geometric flow that 

minimize the Lagrangian. We also discuss the criteria and results 

for evaluating the performances of SAR image compression using 

the wavelet, the bandelets and ridgelet transforms. Our 

experiments showed that during the compression phase, the 

speckle noise is removed from the SAR images inducing further 

improve  of the coding efficiency . 

Keywords- SAR image compression; bandelets transform; 

geometrical flow; 

I.  INTRODUCTION 

Synthetic Aperture Radar (SAR) is active and coherent 

radar microwave, which produce high spatial resolution 

images from a moving platform. The ability of SAR sensors to 

acquire data in all weather conditions from very larger 

dynamic range, make them extremely attractive for diverse 

application such military or surveillance missions. With the 

improvement of SAR technology, the abundance of such 

imagery and due to the limited storage on the airplane or 

satellite, the data rate must be reduced without significant loss 

of image quality. 

In the SAR image formation, the radar produces 2D (range 

and azimuth) terrain reflectivity images. The received radar 

signal is transform into In-phase (I) and Quadrature (Q) 

components to create the complex SAR image, via the Fourier 

transform and geometrical projections [1].  

SAR images present special characteristics due to their 

acquisition mode. In addition to the speckle phenomenon 

resulting of coherent radiation, SAR images contain rich 

textures, revealing that there exist large homogeneous regions. 

So, for an efficient compression, we must use adaptive 

geometric transformations that can efficiently capture the  

 

 

geometric regularity of sub-image.  

The orthogonal wavelets allow efficient representation of 

homogeneous regularity in image like a homogeneous texture,   

or uniform regularity areas. However, they are not adapted to 

represent geometric regularity along the singularities of a 

surface because of their isotropic support. When explored this 

regularity yield an improvement of coding. The image 

representation in separable orthogonal bases cannot take 

advantage of geometrical regularity of image structure [2-6]. 

Several geometric representations have been proposed with 

good results in image analysis; like Bandelets transform [2-7], 

Contourlet transform, Ridgelet transform [8-10], Curvelet 

transform, which effectively capture the regular variation 

information in image along the local geometric direction. The 

Bandelet transform proposed by Erwan Le Pennec and Mallat 

[2,3], is an adaptive approximation of image geometry 

represented by a geometric flow, and it can represent the 

geometric regular images efficiently, this is due to the fact that 

the geometric flow indicates directions in which the image 

grey levels have regular variations. The Ridgelet Transform 

introduced by Candès and Donoho [8], is an non adaptive 

multiscale geometric decomposition, which permit to map a 

linear singularity in image into a point singularity using Radon 

transform, then the wavelet transform can be used to 

effectively handle the point singularity. For practical 

application such as image compression, it is necessary to have 

an orthonormal version of the Ridgelet transform for discrete 

and finite-size images. The Finite Ridgelet Transform (FRIT) 

is accomplished through the finite radon transform 

(FRAT)[10].  

In this paper, we present a comparative study of the 

geometric multiscale transforms for SAR image compression. 

The paper is organized as follows: in the section 2, we 

describe a rapid implementation of geometric multiscale 

representation including the adaptive bandelets  multiscale, the 

non adaptive  finite ridgelet transforms and the  algorithm of 

geometric based SAR image compression. The simulation 

results of progressive image compression on several SAR 

images are shown in section 3. Finally, the conclusion is 

drawn in section 4. 
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II. MULTISCALE SAR IMAGE COMPRESSION 

A. Multiscale bandelets transform  

The multiscale geometric decomposition provides an 

optimally basis for image representation that exploit the 

direction of geometric regularity, which mainly appear in the 

high frequency sub-bands of images. Bandelet bases are 

obtained with a bandeletization of warped wavelet bases, 

which takes advantage of the image regularity along the 

geometric flow 


defined by a polynomial function. The 

bandelets transform can be considered as a wavelet basis 

deformed along the local direction (see Fig. 1(a)).   

The bandelets transform divides the sub-bands of wavelet 

coefficient in dyadic squares inside which the geometric flow 

is parallel, using an optimization that eliminates the 

redundancy due to the wavelet transform. This segmentation is 

called decomposition quadtree (see Fig. 1(b)).  

 
              (a)                                                (b) 

Fig. 1  (a) Example of deformation W of a region i , (b) Quadtree 

decomposition [2,3] 

 Firstly, the image f  is divided into some region i. In a 

region i a geometric flot is a vector field  1 2
,x x


that gives 

the regular variation direction of  f in the neighborhood of 

each (x1 , x2) i [2-8]. In each region, the first generation 

bandelets transform performs the following tasks:  

1.  Re-sampling that calculates the values of the image along 

the geometric flow. It is performed by interpolation on 

cubic splines,  

2. Decomposition, if the region i is regular (without 

geometric flow) then the decomposition is carried out on a 

conventional two-dimensional wavelet basis using a bank 

of filters biorthogonal Daubechies 9/7. A separable 

discrete wavelet is defined by its mother wavelet  and its 

associated scaling function , written as : 
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Otherwise, if the region has a geometric flow 


, then the 

decomposition is performed on a wavelet basis deformed by a 

warping operator W( 


). The flow can be either parallel 

horizontally or vertically, the flow is then defined as: 
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The warped orthonormal basis for a parallel horizontal flow is 

defined by: 
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And hence, for a horizontal flow, the warped image is then: 

   1 2 1 2 1
, , ( )Wf x x f x x c x              (4) 

3. Finally, the bandelization is performed,  it exploit the 

regularity of the function along the geometric flow,  by 

replacing the warped  wavelet with orthonormal bandelets 

basis in the region i  

A dyadic square segmentation is obtained by a successive 

subdivision of support image. The size of maximum and 

minimum dimension of image square affects the directions of 

geometric flow. Fig. 2 shows the geometric flows under 

different image partitions. 

          

Fig. 2  Geometric flow under different dyadic square segmentation 

B. Second generation bandelets 

The first generation bandelets use advantageously the 

geometric structures of images. However, they are not directly 

defined in the discrete case, and they do not offer multi-

resolution representation of the geometry. Therefore, Mallat et 

al. defined the second generation bandelets transform [ 2-5 ]. 

The second generation bandelets consists of applying a 

conventional orthogonal or biorthogonal wavelet 

transformation to image f, then, in each sub-band, a 

hierarchical dyadic square segmentation is performed under 

the best geometry representation. Thereafter, in each dyadic 

square, the best geometry which defines the directionality 



should be determined. Next, an Orthogonal 1D projection is 

performed at the specified geometry to define a 1D discrete 

signal fd. Finally, a 1D discrete wavelet transform is applied to 

the 1D signal fd giving the bandelets coefficients bk. The 

second generation bandelets representation of an image is 

illustrated in Fig. 3. 

 

Fig. 3   Framework of the second generation of bandelets transform[2]  

The best direction d, which produces the less approximation 

error between original image and the reconstructed image, is 

obtained by minimizing a cost function that is the Lagrangian 

value of the distortion rate, defined as: 

  ℒ 𝑓, 𝑇 =  𝑓 − 𝑓𝑅 
2 + 𝜆𝑇2 𝑅𝐺 + 𝑅𝐵            (5) 

where f, fR stand for the original image and the reconstructed 

image by bandelets coefficient; RG, RB represent respectively 

the number of bits to code geometric flow and bandelets 

coefficients in each square at scale 2
j
; λ = 3/28 is the 

Lagrangian factor and T is the threshold defined by user [2-6]. 

C. Finite Ridgelet Transform 

Wavelets are known to be effective enough to represent 

objects with isolated point singularities but fail to represent 

line singularities. In order to overcome the weakness of 

wavelets in higher dimensions, Candes and Donoho  have 

developed the continuous ridgelet transform. The Ridgelet 

transform is a wavelet analysis in the Radon domain. Indeed, 

linear discontinuities (lines) are projected as point singularities 

(points) by Radon transform. By applying wavelet transform 

on the various projections from Radon, we can get an optimal 

coding of the object outline within an image (see Fig. 4). 

Therefore, ridgelet transform is a representation of images 

using few coefficients, the most significant coefficient shows 

the directions of the image lines with the highest energy.  

Given an integrable bivariate function ( , )f x y ; its continuous 

Ridgelet transform (CRT) in 
2  is defined as [8-10]: 

     , ,
, , , ,

f a b
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                                  (6) 

Where 2 ja   is the scale factor, b : the translation factor and 

, ,
( )

a b
x


 :

 
the ridgelets function in 2-dimensional which is 

defined from a wavelet mother function in 1-dimensional 

 x  as: 

    1/2

, , 1 2
cos sin /

a b
x a x x b a


                               (7) 

      

In 2-D, points and lines are related via Radon transform. Thus 

the wavelet and ridgelet transforms are linked via the Radon 

transform. The Radon transform is the collection of line 

integrals, this is given as: 

     
2

1 2
, cos sin

f
R f x x x dx       



                      (8) 

The idea of the ridgelet transform of an object f  is to map a 

line singularity into a point singularity using Radon transform, 

the 1-dimensional wavelet transform is applied to the slices of 

the Radon transform as: 

     ,
, , ,

f a b f
CRT a b R d      



                                     (9) 

In image processing, it is necessary to have an orthonormal 

version of the Ridgelet transform for discrete and finite-size 

images. The finite ridgelet transform (FRIT) is accomplished 

through the finite radon transform (FRAT), which is defined 

as the summation of image pixel values along a set of lines. 

The discrete ridgelet transform FRIT is obtained by taking the 

discrete wavelet transform (DWT) of each FRAT projection 

set       0 , 1 ,..., 1
k k k

r r r p , it is defined as:   

     , , , k

n
FRIT k n FRAT k m m                                   (10) 

where  k

n
m is the wavelet basis function of FRAT.  

Consider  0,1,..., 1
p

Z p   the FRAT of real function f(x,y) 

on the finite grid 2

p
Z  is defined as:  

   
  ,,

1
, ( , )

k m

k f

x y L

r m FRAT k m f x y
p 

           (11)  

where ,k mL   denotes a set of points that form a line on the 

lattice 2

p
Z , k: defines the slope of the line and m  refers to the 

coefficient of ridgelet transform in each direction (see Fig. 4).  



 
Fig. 4  The Finite Ridgelet Transform [8] 

D. Image compression system based on  transformation 

Most compression systems can be decomposed into the 

components shown in Fig. 5. The transform is an essential 

lossless process which eliminates spatial redundancy which is 

a crucial step for compression. In most compression systems, 

the transform produces sets of coefficients that we refer to as 

coefficients sub-images. Given a desired total bit rate, the bit 

allocator determines how many bits should be allocated to 

each coefficient sub-image. 

 

  Fig. 5  Scheme of compression system based on the transform [1] 

Analogically to the compression in wavelet basis, the 

bandelets transform and ridgelet transform  codes are 

implemented with a scalar uniform quantization and entropy 

coding of all coefficients. Let  D B


  : the dictionary of all 

possible biorthogonal basis;  for a fixed quantization step size, 

the best basis  m
b



 that minimizes the distortion-rate is found 

using Lagrangian optimization. The reconstructed image from 

the uniformly quantization with a threshold TQ is given by: 

 
2

1

,
Q

N

R T m m
m

f Q f b b 



                                       (12) 

The uniform quantize 
QT

Q , standing for the major source of 

loss in image quality converts the high-precision coefficients 

into sets of discrete symbols by adaptive arithmetic coding 

procedures.   

 For a compressed image the bit rate achieved by the 

compressor measured in bit/pixel, is defined as the ratio of the 

number of bits used in the compressed representation of the 

image and the number of pixels in the image 

E. Performance measures 

The SAR images are corrupted by a noise called speckle, 

which makes the interpretation of SAR images very difficult. 

To evaluate SAR image compression techniques, the 

commonly used performance measures are : the peak signal to 

noise ratio (PSNR) defined as [11,12]: 

2 1
( ) 10.log

R
PSNR dB

MSE

 
  

 
                        (13) 

Where MSE is the Mean Square Error 

  /
Rl k

MSE f f n m      between the original image f of 

size (m,n) and the decompressed image fR, R is the number of 

bits to code image ( R= 255, for  8 bits/pixel )  

 The Equivalent Number of Looks ( ENL) is used to measure 

the suppression of speckle noise in SAR image, it is calculated 

from the local variation coefficient Cv in a  homogeneous 

zone. The ENL is defined as:  

2

2

1
ENL

C





                            (14) 

Where μ and σ are respectively the mean and standard 

deviation estimated in the homogeneous zone 

III. EXEPERIMENT AND DISCUSS  

 In this section, we evaluate the performance of 

compression technique on several SAR images: Northrop 

Grumman SABR Radar SAR image of size 512x512, SAR 

image with mini-SAR (4meter in resolution) of sandia national 

laboratory of size 512x512 and Aerial image.  To compare the 

compression results obtained using the second generation 

bandelets transform (2Gbandelet), the ridgelet transform  and 

wavelet transform, we are required to use a visual estimation 

and quality measure for a fixed bit rate (bpp) to quantify the 

degree to which the reconstructed image matched the original.  

 The compression in a bandelet basis is compared with a 

compression in the 7/9 CDF (Cohen-Daubechies-Feauveau) 

wavelet basis and a compression in FRIT basis, using the same 

quantization and adaptive arithmetic coding procedures. Fig. 

6, represents the compression results at several rate bit 

(bpp=0.28 bit/pixel and bpp=1.96 bit/pixel). In our work we 

use a uniform quantization with varying step. We note that 

there is a gain increase of about 1.32 dB at a bit rate of 1.96 

bpp, and 4.57 dB at a bit rate 0.28 bpp  over the wavelet 

transform. 



 

Fig. 6  Comparison of SAR image compression, at bpp=1.96 bit /pixel (DWT 
PSNR =35.86 dB, FRIT PSNR = 34.71 dB and 2GBandelet PSNR = 37.18dB) 

and at bpp=0.28bit/pixel  (DWT PSNR =19.55 dB,  FRIT PSNR = 18.85 dB 

and 2G Bandelet PSNR = 24.10dB) 

 The artifact problem in 2G bandelet, wavelet and ridgelet 

transforms at the same rate is shown in fig. 7, the result 

demonstrate good visual quality with the least artifacts and 

fake structures in experiments using multiscale geometric 

transforms. The distortion is lower in a multiscale geometric  

basis than in a wavelet basis, which can be seen on the better 

reconstruction of the geometrical structures of the image. 

 
Fig. 7  Artifact problem in Wavelet, 2G Bandelet and FRIT transforms 

The quantitative results are given in Table 1, which presents 

the values of the PSNR (dB) of compressed images at different 

rate bit. 

TABLE 1.   PSNR(dB) RESULTS FOR SAR IMAGE COMPRESSION AT 

DIFFERENT BPP ( NUMBER BITS/PIXEL) 

bpp 
(bit/pixel) 

 

2.52     

 

1.47     

 

0.83     

 

0.28    

 

0.17 

  

0.08 

PSNR dB 
(DWT) 

  37.71   32.33  29.06   17.56   15.88   14.94 

PSNR dB 
(2G BT) 

38.86   33.18   30.01     17.19   15.39 14.07 

PSNR dB 
(FRIT) 

37.80   30.76   25.40  22.19  21.76  21.26 

we notes that the PSNR -bit rates depend  on the structural 

regularity of features present in each image. The Fig. 8 and  9 

illustrate the variation of PSNR with bpp (bit/pixel) for several 

SAR images which have dominant geometric structures.  

 
Fig. 8  Result of SAR image compression using 2G bandelet, Wavelet and 

FRIT transforms 

For most images, the PSNR results obtained are in the range [25,40] 

dB for bit rate ranging between 0.1 and 2.55 bit per pixel. We notes 

that the PSNR  rates obtained depend on the characteristics of the 

regularity of the structures present in each image. 

 Fig. 9  Result of Aerial image compression using 2G bandelet, Wavelet and 

FRIT transforms 

SAR Image with 

mini-SAR (4 in. 
Resolution), Courtesy 

of Sandia National 

Laboratory 

 



From the results shown in Fig. 10 below, we noted that in the 

case where the image has dominant directional structures; The 

geometric wavelets are robust and efficient; because they can 

better represent geometric regularities. While  the separable 

wavelets are more suited to the representation the images 

where the homogenous areas are dominants (see Fig. 10). 

 

Fig. 10 Result of SABR Radar SAR image compression using 2G bandelet, 

Wavelet and FRIT transforms 

One of the major problems in processing SAR image is 

speckle or coherent noise which can be modeled as 

multiplicative noise.  A good filtering in homogeneous areas, 

is provided by a value of coefficient of variation Cv low, a 

decrease in the value of the standard deviation σ, an overall 

conservation of the mean μ, and an increase in the value of the 

ENL (see Table 2). 

TABLE 2. EVALUATION MEASURE FOR SAR IMAGE COMPRESSION AND 

DESPECKLING 

Bpp(bit/pixel) = 2.10 

 PSNR(dB) ENL Cv  

2GBT 37.18 20.75 0.219 

DWT 35.86 20.62 0.220 

FRIT 34.71 20.75 0.219 

Bpp (bit/pixel)=1.47 

2GBT 33.18 6.94 0.375 

DWT 32.33 6.87 0.372 

FRIT 30.76 6.93 0.379 

IV. CONCLUSION 

 In this paper we present a comparative study of SAR 

images compression based on adaptive (2G Bandelets) and 

non adaptive (FRIT) geometric wavelet transforms with low 

complexity. We conducted our experiments on several SAR 

images. According to the objective evaluations criteria 

retained, namely PSNR and ENL, we note that a multiscale 

geometric representation for SAR image compression gives 

promising results of the rate of compression at low bit rate, 

and ensures an effective reduction of speckle noise. In the case 

where the image has dominant directional structures; The 

geometric wavelets are robust and efficient ; because they can 

better represent geometric regularities. While  the separable 

wavelets are more suited to the representation of images where 

the homogenous areas are dominants 
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