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Abstract—In this work, a proportional integral observer based
on the sliding mode principle is used for the state and the sensor
fault estimation. The state and the fault estimations are made
using a particulate mathematical transformation. The application
of this mathematical transformation to the initial system output
let to conceive an augmented system where the initial sensor fault
appears as an unknown input. An adaptive mathematical form
is used for the sign function to facilitate the determination of
the proportional gains of the conceived observer. The observer
convergence conditions are formulated in the form of linear
matrix inequalities (LMI) allowing computing the observer gains.
The proposed proportional integral sliding mode observer is
applied to a numerical example showing the efficiency of the
fault and state estimation.
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I. INTRODUCTION

Many types of faults such as sensor and/or actuator faults
can affect systems. To identify and eliminate these faults,
many techniques have been used [13] [2] [21]. In the case of
linear systems, [22] and [23] show the robustness of the fault
detection and isolation (FDI) where the studied systems are
affected by model uncertainties. Fault detection and isolation
is used to provide invariance to uncertainty using unknown
input observer (UIO) [24].

Observers with unknown inputs are used to estimate actuator
faults. This estimation can be made using proportional integral
observer(PIO) [7], [8]. This kind of observer is useful to
estimate faults of sensors and/or actuators and uncertainty
of measurement [14], [15], [17]. For fault detection and
isolation, a design of a PIO is presented to minimize the
L2 gain between the uncertainty and the fault reconstructing
system [16]. In addition, to obtain the desired robustness,
the PIO had an additional term which is proportional to the
integral of the output error estimation.

Using Takagi-Sugeno models, the authors in [13], [14]
propose a method of state and sensor and actuator faults

estimation using an adaptive form of proportional integral
observer. The proposed technique of state and fault estimation
is applied to a Takagi-Sugeno system affected simultaneously
by sensor and actuator faults. For singular nonlinear systems
proportional integral multi-observers are conceived showing
the ability of estimation of the system state and the unknown
input even in the presence of noise [10].

Some research focus in the use of adaptive observers for
fault diagnosis [9], [12]. In [25], an adaptive technique of
observer design for deterministic system has been developed
allowing the estimation of actuator and sensor faults. The
algorithm of fast adaptive fault estimation (FAFE) improve
the performance of fault estimation, using constant and
time-varying parameters.

The main contribution in this paper is the estimation of
sensor fault using a proportional integral observer based
on sliding mode principal for uncertain nonlinear systems
described by multiple model structures with activation
functions depending on the known system input. For sensor
fault estimation, a mathematical transformation is applied
to the system output. The use of this transformation allows
obtaining an augmented system in which the initial sensor
fault appear as an unknown input. An adaptive proportional
integral sliding mode observer is conceived after that in order
to estimate the state and the unknown input. A specific form
of the function sign [11] is used in order to simplify the
observer design. The convergence conditions of the proposed
observer are computed using a quadratic Lyapunov function
and are expressed as a set of linear matrix inequalities (LMI).

This paper is organized as follows, section 2 recalls the
uncertain multiple model structure with unknown input. In
the next section, the observer structure is presented and the
stability conditions of the state and the faults estimation error
are given. The section 4 presents the state estimation. An
example of simulation is the subject of section 5.

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 213-219

PC
Typewriter
Copyright IPCO-2016

PC
Typewriter
ISSN: 2356-5608

User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text



II. UNCERTAIN MULTIPLE MODEL STRUCTURE WITH

UNKNOWN INPUT

A nonlinear uncertain system described by multiple model
structure affected by sensor fault can be written in the follow-
ing form:⎧⎨
⎩ ẋ(t) =

M∑
i=1

μi(ξ(t))((Ai +ΔAi)x(t) + (Bi +ΔBi)u(t))

y(t) = Cx(t) + Ef(t)
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

r is the known
input, y(t) ∈ R

p is the measured output, f(t) represents the
sensor fault and E is the fault distribution matrix. A i, Bi and
C are known constant matrices with appropriate dimensions,
ΔAi and ΔBi are the uncertainties matrices affecting Ai and
Bi, M is the number of sub-models and μi(ξ(t)) are the
activation functions which depend on the decision variable
ξ(t). ξ(t) can be the input, the output, or the system state
and must verify the following convex proprieties:

M∑
i=1

μi(ξ(t)) = 1 and 0 ≤ μi(ξ(t)) ≤ 1 (2)

Considering the state z(t) ∈ R
p who is a filter for the output

y(t) [13], [7], [14]. This state is given by the following
equality :

ż(t) =

M∑
i=1

μi(ξ(t))(−Āiz(t) + ĀiCx(t) + ĀiEf(t)) (3)

where −Āi ∈ R
p∗p are stable matrices.

The augmented state X(t) = [xT (t) zT (t)]T , is introduced.
This augmented state can be written as follows:

⎧⎪⎪⎨
⎪⎪⎩

Ẋ(t) =
M∑
i=1

μi(ξ(t))((Aai +ΔAai)X(t)+

(Bai +ΔBai)u(t) + Eaif(t))
Y (t) = CaX(t)

(4)

where :

Aai =

[
Ai

ĀiC
0
−Āi

]
, ΔAai =

[
ΔAi

0
0
0

]
,

ΔBai =

[
ΔBi

0

]
, Bai =

[
Bi

0

]
, Eai =

[
0
ĀE

]

and Ca =

[
C
0

0
I

]
III. OBSERVER STRUCTURE

The proposed proportional integral sliding mode observer
is given in the following form :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) =

M∑
i=1

μi(ξ(t))(AaiX̂(t) +Baiu(t) +Kisign(S)

+ αai + γai)

˙̂
f(t) =

M∑
i=1

μi(ξ(t))Li(Y (t)− Ŷ (t))

Ŷ (t) = CaX̂(t)

(5)

where X̂(t) ∈ R
n is the estimated augmented state vector,

Ŷ (t) ∈ R
n is the estimated output and Ki ∈ R

n−m represents

the gains of the ith local observer. αai and γai represent the
compensation terms of the uncertainty matrices ΔAai and
ΔBai.
The gains Ki , Li , αai and γai are added in order to ensure
the asymptotic convergence to zero of the estimation error.
S ∈ R

n−p is called sliding surface with S = (Y (t)− Ŷ (t)).
To identify the gains Ki, the following mathematical repre-
sentation of sign(S) is proposed:

sign(S) =
S

|S| = S − S(|S| − 1)

|S| (6)

In the rest of paper , the following notation is used:

Fi =
S(|S| − 1)

|S|
Using these notations, the proposed observer becomes:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) =

M∑
i=1

μi(ξ(t))(AaiX̂(t) +Ki(Y (t)− Ŷ (t))+

Baiu(t)−KiFi + αai + γai)

˙̂
f(t) =

M∑
i=1

μi(ξ(t))Li(Y (t)− Ŷ (t))

Ŷ (t) = CaX̂(t)

(7)

IV. STATE ESTIMATION

Lemma 1 [1]: For all matrices X and Y with appropriate
dimensions, the following property is verified:

XTY +XY T ≤ βXXT + β−1Y Y T with β > 0 (8)

Let us define the state estimation error ẽ(t) and the fault
estimation error f̃(t) given by the following expressions:

ẽ(t) = X(t)− X̂(t) (9)

f̃(t) = f(t)− f̂(t) (10)

The dynamic of the state estimation can be written as follows:

˙̃e(t) = Ẋ(t)− ˙̂
X(t)

˙̃e(t) =

M∑
i=1

μi(ξ(t))((Aai −KiCa)ẽ+ΔAai +ΔBai

+KFi − αai − γai + Eaf(t)) (11)

The dynamic of the fault estimation can be written as follows:

˙̃
f(t) = ḟ(t)− ˙̂

f(t)

In this work, it is supposed that ḟ(t) = 0. Under this
assumption the dynamic of the fault estimation is given by
the following equality:

˙̃
f(t) = − ˙̂

f(t)

˙̃
f(t) =

M∑
i=1

μ(ξ(t))(−Li(Y (t)− �

Y (t))) (12)

The variable ϕ(t) given by the following expression is
introduced:

ϕ(t) =

[
ẽ(t)

f̃(t)

]
(13)



The dynamic of the state estimation error (11) and the fault
estimation error (12) can be rewritten as follows :

ϕ̇(t) = (Āaiϕ(t) +ΔAaiX(t) +ΔBaiu(t) +Ni − ᾱai − γ̄ai)
(14)

where :

Āai =
M∑
i=1

μi(ξ(t))Ami, Ni =
M∑
i=1

μi(ξ(t))

[
KFi

0

]
,

ΔAai =

M∑
i=1

μi(ξ(t))

[
ΔAai 0
0 0

]
,

ΔBai =
M∑
i=1

μi(ξ(t))

[
ΔBai

0

]
,

ᾱai =

M∑
i=1

μi(ξ(t))

[
αai

0

]
, γ̄ai =

M∑
i=1

μi(ξ(t))

[
γai
0

]
,

and Ami =

[
Aai −KiCa Eai

−LiCa 0

]
To study the convergence to zero of the generalized estimation
errors ϕ(t), the Lyapunov function V (t) = ϕT (t)Pϕ(t) is
used, where P is a symmetric definite positive matrix. The
generalized estimation error ϕ(t) converges to zero if:

V̇ (t) = ϕ̇(t)
T
Pϕ(t) + ϕ̇(t)Pϕ(t)T < 0 (15)

The derivative of the Lyapunov function V (t) is given by:

V̇ (t) = (ĀT
aiϕ

T (t)Pϕ(t) + Āaiϕ(t)PϕT (t) +

ΔAai
T
XT (t)Pϕ(t) + ΔAaiX(t)PϕT (t) +

ΔBai
T
uT (t)Pϕ(t) + ΔBaiu(t)PϕT (t) + (16)

Ni
TPϕ(t) + NiPϕT (t)− ᾱT

aiPϕ(t)−
ᾱaiPϕT (t)− γ̄aiPϕT (t)− γ̄T

aiPϕ(t))

Applying (8), the dynamic of the Lyapunov function can be
rewritten as follows:

V̇ = {(ĀT
aiP + ĀaiP + χi)ϕi

Tϕi + θi} (17)

where :

χi = β−1
1 ΔAai

T
ΔAaiP

2 + β−1
2 ΔBai

T
ΔBaiP

2 + β−1
3 P 2

θi = β1X
T (t)X(t) + β2u

T (t)u(t) + β3NiNi
T − 2γ̄aiPϕi

T

−2ᾱaiPϕi
T

V̇ (t) < 0 if the two following conditions are verified:{
θi = 0
ĀT

aiP + ĀaiP + χi < 0

1) First condition: θi = 0,=⇒ the variables ᾱai and γ̄ai
can be given by the following inequalities:

ᾱai ≤ β1X
T (t)X(t) + β2u

T (t)u(t)

2Pϕi
T

(18)

γ̄ai ≤ β3NiNi
T

2Pϕi
T

(19)

2) Second Condition

ĀT
aiP + ĀaiP + χi < 0 (20)

The matrix Āai can be rewritten as follows:

Āai = Aφi −KφiCt (21)

where :

Aφi =
M∑
i=1

μi(ξ(t))

[
Aai Ea

0 0

]
,

Kφi =
M∑
i=1

μi(ξ(t))

[
Ki

Li

]

and Ct =
M∑
i=1

μi(ξ(t))[ Ca 0 ]

The inequality (20) can be rewritten in the following
form:

PAφi
T − PKφi

TCt
T + AφiP −KφiPCt + χi < 0 (22)

Inequality (22) is non-linear since the term PKφi exist.
To write it in the form of a linear matrix inequality, the
following change of variable is used:

Gi = KφiP (23)

Inequality (22) will be as following :

PAφi
T +AφiP −GiCt −GT

i C
T
t + χi < 0 (24)

The application of the Schur complement to (24), allows
obtaining the following inequality ∀i ∈ {1...M}:⎡

⎢⎢⎣
υi ΔB

T

aiP ΔA
T

aiP P
PΔBai −β−1

1 I 0 0
PΔAai 0 −β−1

2 I 0
P 0 0 −β−1

3 I

⎤
⎥⎥⎦ < 0 (25)

where:

υi = PAφi
T +AφiP −GiCt −GT

i C
T
t

The observer design is summarized by the following theorem:
Theorem 4.1: The system (14) describing the time evolution

of the state estimation error x̃(t) and the fault estimation error
f̃(t) is stable, if there exists a symmetric, positive definite
matrix P, gain matrices Gi, i ∈ {1...M} and positive scalars
βj such that the following LMIs are verified ∀i ∈ {1...M}:⎡

⎢⎢⎣
υi ΔB

T

aiP ΔA
T

aiP P
PΔBai −β−1

1 I 0 0

PΔAai 0 −β−1
2 I 0

P 0 0 −β−1
3 I

⎤
⎥⎥⎦ < 0 (26)

where :

υi = PAφi
T +AφiP −GiCt −GT

i C
T
t

The observer gains are computed using the equation Kφi =
GiP

−1 and the attenuation levels are given by β i. �



V. SIMULATION RESULTS

Consider the uncertain nonlinear system described by mul-
tiple model structure composed of three local models, 3 states
and 3 outputs. The decision variable ξ(t) is choosen as the
known system input (ξ(t) = u(t))⎧⎨
⎩ ẋ(t) =

M∑
i=1

μi(u(t))((Ai +ΔAi)x(t) + (Bi +ΔBi)u(t))

y(t) = Cx(t) + Ef(t)
(27)

The system matrices are:

A1 =

⎡
⎣ −2 1 −1

1 −3 0
2 1 −8

⎤
⎦ , A2 =

⎡
⎣ −0.5 0.25 0.25

0.25 −0.75 0
0.5 0.25 −2

⎤
⎦ ,

A3 =

⎡
⎣ −3 2 2

5 −8 0
0.5 0.5 −4

⎤
⎦ , B1 =

⎡
⎣ 1

0.5
0.5

⎤
⎦ , B2 =

⎡
⎣ 0.1

5
0.5

⎤
⎦ ,

B3 =

⎡
⎣ 0.5

1
0.5

⎤
⎦ and C =

⎡
⎣ 1 1 0

0 1 1
1 0 1

⎤
⎦

The uncertainties matrices are:

ΔA1 =

⎡
⎣ −0.4 0.2 0.2

0.2 −0.6 0
0.4 0.2 −1.6

⎤
⎦ ,

ΔA2 =

⎡
⎣ −0.0250 0.0125 0.0125

0.0125 −0.0375 0
0.0250 0.0125 −0.1

⎤
⎦

and ΔA3 =

⎡
⎣ −1.5 1 1

2.5 −4 0
0.25 0.25 −2

⎤
⎦

The fault distribution matrix is:

E =

⎡
⎣ 0 1

2.5 0.5
2 −1.5

⎤
⎦

The weighting functions are chosen in Gaussian form and
depending on the known input u(t) :

ω1(u(t)) =
e

(−u(t)−a1)2

2σ2

σ
√
2π

,ω2(u(t)) =
e

(−u(t)−a2)2

2σ2

σ
√
2π

and ω3(u(t)) =
e

(−u(t)−a3)2

2σ2

σ
√
2π

where : σ = 0.15 , ai = 0.1 , ai = 0.5 and ai = 0.9
The activation function are obtained after the normalization
of the weighting functions: they are given by the following
expressions:

μi =
ωi

3∑
j

ωj

∀ j ∈ {1..3}

The fault signal f(t) is given by, f(t) = [f T
1 (t) fT

2 (t)]T

where:

f1(t) =

⎧⎨
⎩

1.5 if 20 < t < 50
1 if 90 < t < 100
0 otherwise

f2(t) =

⎧⎨
⎩

1.5 if 20 < t < 50
1 if 50 < t < 80
0 otherwise

The parameter βi ∈ {1..3} are: β1 = 29.1207 ,β2 = 29.7718
and β3 = 31.6544. They allow guaranteeing the convergence
of the estimation error to zero rather quickly.
The resolution of (26), allows finding the observer gains
K̄m1,K̄m2 and K̄m3. These matrices are given below :

K̄m1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.9065 −1.3945 −2.5007 0.1097 .....
−0.4119 0.7858 0.5956 0.0072 .....
6.3982 −5.4822 0.8339 0.0314 .....
49.9361 0.0391 −0.0503 −47.3249 .....
−0.0632 50.0672 0.1364 0.9804 .....
−0.2676 0.2051 50.1091 −1.4848 .....
0.9072 −0.7665 −0.5803 −0.0357 .....
−0.3740 0.2901 0.1317 58.8369 .....

..... −0.0011 0.3190

..... 0.0317 0.0918

..... −0.4156 −0.6026

..... 1.1404 −1.1433

..... −44.5482 1.1869

..... −0.1409 −45.6699

..... 146.1639 117.6473

..... 29.3351 −88.5064

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

K̄m2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4550 −1.2742 1.5860 0.0187 .....
2.7729 0.3729 −0.5176 0.0012 .....
−0.0253 0.4542 −0.1339 0.0059 .....
9.9893 0.0086 −0.0140 −8.1792 .....
−0.0197 10.0192 0.0279 0.1966 .....
−0.0605 0.0535 10.0125 −0.2973 .....
0.1820 −0.1540 −0.1157 −0.0036 .....
−0.0749 0.0583 0.0259 11.7854 .....

..... 0.0002 0.0564

..... 0.0058 0.0164

..... −0.0744 −0.1074

..... 0.2283 −0.2285

..... −7.6198 0.2379

..... −0.0294 −7.8516

..... 29.2532 23.5351

..... 5.8840 −17.7246

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

K̄m3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.4804 2.1818 −2.1004 0.0300 .....
−3.4516 −0.5965 0.5907 0.0019 .....
1.4841 −1.4016 0.4449 0.0091 .....
14.9763 0.0082 −0.0116 −13.0717 .....
−0.0199 15.0226 0.0434 0.2954 .....
−0.0919 0.0568 15.0455 −0.4467 .....
0.2724 −0.2299 −0.1743 −0.0079 .....
−0.1126 0.0867 0.0400 17.6663 .....

..... 0.0001 0.0892

..... 0.0090 0.0258

..... −0.1170 −0.1692

..... 0.3423 −0.3429

..... −12.2357 0.3564

..... −0.0435 −12.5763

..... 43.8686 35.2970

..... 8.8139 −26.5718

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The activation functions μi(u(t)) are presented in figure (1).
This figure, shows that the used activation function verifies the
convex propriety.
Simulation results are shown in figures 1, 2 and 3:
Figure (2) shows the system states and their estimations.

It’s clear that the proposed proportional integral sliding mode
observer allows estimating well the system state. In addition,
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Fig. 1. Activation functions µi(u(t))
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Fig. 2. States and their estimation

this simulation shows the performance of the chosen math-
ematical form of the function sign in order to guarantee
a robustness control for state estimation. Figure (3) shows
the time evolution of the state estimation error. This error is
approximatively null.
Fig 4 shows the sensor faults and their estimation. It is shown
that the mathematical transformation allows estimating well
the sensor fault. The fault estimation follows the original signal
quickly. for example, in the second part of the fault estimation
figure, the first change between zeros to ones takes less to 10
second and the system is stabilized in the next change in less
then 3 second and the system get the right direction.
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Fig. 4. Sensor fault and their estimation

VI. CONCLUSION

The developed proportional integral sliding mode observer
is able to estimate the system state and the unknown inputs,
its use in the case of nonlinear systems described by multiple
model structures give a successful state and fault reconstruc-
tion. A specific form of the sign function is proposed and used
in order to simplify the observer design the state estimation.
A mathematical transformation is applied to the system output
in order to conceive an augmented system in which the initial
sensor fault appear as an unknown input which makes easier
the fault estimation. The stability conditions of the proposed
proportional integral sliding mode observer are expressed in
the form of linear matrix inequalities (LMI).
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Polytechnique de Lorraine, 12-16-2004.

[2] A. Akhenak , Chadli M., Ragot J., Maquin D. ”Design of sliding
mode unknown input observer for uncertain Takagi-Sugeno model”. 15th
Mediterranean Conference on Control and Automation, MED’07, Athens,
Greece, June 27-29, 2007.

[3] S. Beale, B. Shafai, ”Robust control system design with a proportional
integral” International Journal of Control Volume 50, Issue 1, 1989
DOI:10.1080/00207178908953350

[4] P. Bergsten, R. Palm, D. Driankov, ”Observers for Takagi-Sugeno fuzzy
systems”. IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics, 32(1):114-121, 2002.

[5] J. Chen, R. Patton, ”Robust model-based fault diagnosis for dynamical
systems”. The International Series on Asian Studies in Computer and
Information Science 3, Springer US, 1999.

[6] J. Chen and H. Zhang, ”Robust detection of faulty actuators via unknown
input observers,” International Journal of Systems Science, vol. 22, pp.
1829-1839, 1991

[7] C. Edwards ”A comparison of sliding mode and unknown input observers
for fault reconstruction”. 43rd IEEE Conference on Decision and Control,
CDC’04, Atlantis, Paradise Island, Bahamas, December 14-17, 2004.

[8] C. Edwards, S. K. Spurgeon, ”Sliding mode observers for fault detection
and isolation”. Automatica, 36(6):541-553, 2000.14-17, 2004.

[9] A. Fekih, H. Xu, and F. N. Chowdhury, ”Neural networks based system
identification techniques for model based fault detection of nonlinear
systems,” International Journal of Innovative Computing, Information and
Control, vol. 3, no.5, pp. 1073-1085, October 2007.

[10] H. Hamdi, M. Rodrigues, C. Mechmeche, N. Benhadj Braiek . ”Synthèse
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ence Internationale Francophone dAutomatique, CIFA, Jun 2010, Nancy,
France. pp.Proceedings, 2010. ¡hal-00469636¿.

[11] I. Elleuch, A., Khedher K., Ben Othman ”Proportional Integral Sliding
Mode Observer For Uncertain Takagi Sugeno Systems With Unknown
Inputs.” 7th International Conference of Modelling, Identification and
Control ICMIC-2015, Sousse, December 18-20, 2015.

[12] B. Jiang, M. Staroswiecki and V. Cocquempot, ”Fault accommodation
for nonlinear dynamic systems,” IEEE Trans. on Automatic Control,vol.
51, no. 9, pp. 1578-1583, September 2006.

[13] A.Khedher, K. Ben othmen, M. Benrejeb, D.Maquin, ”Adaptive observer
for fault estimation in nonlinear systems described by a Takagi-Sugeno
model,” 18th Mediterranean Conference on Control and Automation
Congress Place Hotel, Marrakech, Morocco, June 2010.

[14] A. Khedher, K. Benothman, D. Maquin, M. Benrejeb, ”Sensor fault
estimation for nonlinear systems described by Takagi-Sugeno models”.
Interntional Journal Transaction on System, Signal & Devices, Issues on
Systems, Signal & Devices. Vol. 6, No. 1, pp 1-18, 2011.

[15] A. Khedher, K. Benothman, D. Maquin, M. Benrejeb, ”Adaptive ob-
server for fault estimation in nonlinear systems described by a Takagi-
Sugeno model”. 18th Mediterranean Conference on Control and Automa-
tion, MED10, June 24-26, Marrakech, Morroco, 2010.

[16] N. Kobayashi, T. Nakamizo, ”An observer design for linear systems with
unknown inputs”. International Journal of Control, 35(4):605-619,

[17] P. Kudva, N. Viswanadham, A. Ramakrishna, ”Observers for linear
systems with unknown inputs”. IEEE Transactions on Automatic Control,

[18] R. Orjuela, B. Marx, J. Ragot and D. Maquin, ”On the simultane- ous
state and unknown inputs estimation of complex systems via a multiple
model strategy”. IET Control Theory and Applications, 3(7):877-890,2009.

[19] R. Patton and J. Chen, ”Robust fault detection of jet engine sensor
by using eigenstructure assignment,” Journal of Guidance Control and
Dynamics, vol. 15, pp. 1491-1496, 1992.

[20] M. Saif and Y. Guan, ”A new approach to robust fault detection and
identification,” IEEE Transactions on Aerospace and Electronic Systems,
vol.29, pp. 685-695, 1993.

[21] R. Sharma, M. Aldeen, ”Estimation of unknown disturbances in non-
linear systems”. Control 2004, University of Bath, UK, September 6-9,
2004

[22] C. Tan and C. Edwards, ”Sliding mode observers for robust detection
and reconstruction of actuator and sensor faults,” International Journal of
Robust and Nonlinear Control, vol.13 , pp.443-463, 2003.

[23] F. E. Thau, ”Observing the state of non-linear dynamic systems”.
International Journal of Control, 17(3):471-479, 1973.

[24] A. Weinmann, ”Uncertain Models and Robust Control”. Springer-Verlag
Wien New York, Vienne (1991)

[25] K. Zhang, B. Jiang, and V. Cocquempot . ”Adaptive Observer-based
Fast Fault Estimation” , International Journal of Control, Automation, and
Systems, vol. 6, no. 3, pp. 320-326, June 2008.




