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Abstract—In this paper, a detailed mathematical model for
a Quadrotor Vertical Take-Off and Landing (VTOL) type of
Unmanned Aerial Vehicles (UAVs) is firstly established for the
nonlinear attitude and position control. All aerodynamic forces
and moments of the studied Quadrotor UAV are described
within an inertial frame. The dynamic model is obtained using
the Newton-Euler formalism. A nonlinear Sliding Mode Con-
trol (SMC) approach is then designed for this vehicle in order to
stabilize its vertical flight dynamics. The tracking of an helical
desired trajectory is investigated for the SMC-controlled Quad
rotorcraft. Demonstrative numerical simulation are carried out
in order to demonstrate the effectiveness of the proposed control
approach.

Index Terms—VTOL aircraft, Quadrotor UAV, modeling, flight
dynamics, sliding mode control, attitude and position stabiliza-
tion, Lyapunov theory, path tracking.

I. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) refers to a flying
machine without an on-board human pilot [1], [2], [3], [4],
[5]. These vehicles are being increasingly used in many civil
domains, especially for surveillance, environmental researches,
security, rescue and traffic monitoring.

Researchers have led to different designs for this type of
aircrafts. A Quadrotor UAV is one of the Vertical Take-Off and
Landing (VTOL) designs which are proven to have promising
flying concepts due to their high maneuverability. The complex
mechanical structure of the Quadrotor, its strongly nonlinear
and coupled dynamics, its multiple inputs-outputs and the
observation difficulty of its states allowed this VTOL aircraft
to be a popular topic of research in the field of robotics and
nonlinear control theory. So, modeling and control of this kind
of nonlinearl systems became increasingly difficult and hard
tasks in the practical design and prototyping framework.

Several linear control approaches, such as PID,Linear
Quadratic Regulator (LQR) and Linear Quadratic Gaussian
(LQG), have been proposed in the literature and applied for
attitude stabilization and/or altitude tracking of Quadrotors
[6], [7]. However, these methods can impose limitations on
application of Quadrotors for extended flight regions, i.e.
aggressive maneuvers, where the system is no longer linear.
Moreover, the stability of the closed-loop system can only be
achieved for small regions around the equilibrium point, which
are extremely hard to compute. In addition, the performances
on tracking trajectories of these control laws are not satisfac-
tory enough comparing with other more advanced methods.

To overcome this problem, nonlinear control alternatives, such
as the feedback linearization [8], SMC [9], [10], [11] and
Backstepping [13] approaches are recently used in the VTOL
aircrafts control framework. An integral predictive/nonlinear
H∞ strategy has been also proposed and applied by G.V.
Raffo et al. in [12]. In this paper, a nonlinear SMC approach
is proposed for the attitude stabilization for a Quadrotor. Roll,
pitch and yaw dynamics are separately controlled thanks to
Lyapunov-based designed SMC controllers. A nonlinear model
of the studied UAV is firstly established using the Newton-
Euler formulation.

The remainder of this paper is organized as follows. Section
II presents the flight dynamics modeling of the Quadrotor UAV
based on the well known Newton-Euler approach. Section III
is devoted to design a nonlinear SMC approach for the UAV
flight stabilization and path tracking. All numerical simulation
results, obtained for modeling and control, are presented and
discussed in Section IV. Section V concludes this paper.

II. MODELING OF THE QUADROTOR UAV

Design and analysis of control systems are usually started
by carefully considering mathematical models of physical
systems. In this section, a complete dynamical model of the
studied Quadrotor UAV is established using the Newton-Euler
formalism.

A. System description and aerodynamic forces

A Quadrotor is an UAV with four rotors that are controlled
independently. The movement of the Quadrotor results from
changes in the speed of the rotors. The structure of Quadrotor
in this paper is assumed to be rigid and symmetrical. The
center of gravity and the body fixed frame origin are coincided.
The propellers are rigid and the thrust and drag forces are
proportional to the square of propeller’s speed. The studied
Quadrotor rotorcraft is detailed with their body- and inertial-
frames FFF b

(
b, xb, yb, zb

)
and FFF i

(
G,XG, Y G, ZG

)
respec-

tively, as shown in Fig. 1.
Let consider the following model partitions naturally into

translational and rotational coordinates [1], [3], [4], [5]:

ξ = (x, y, z) ∈ R3, η = (ϕ, θ, ψ) ∈ R3 (1)

where ξ = (x, y, z) denotes the position vector of the center
of mass of the Quadrotor relative to the fixed inertial frame,
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Fig. 1. Mechanical structure of the Quadrotor and related frames.

η = (ϕ, θ, ψ) denotes the attitude of the Quadrotor given by
the Euler angles ϕ, θ and ψ.

We note that, ϕ is the roll angle around the x-axis, θ is the
pitch angle around the y-axis and ψ are the roll angle around
the z-axis. All those angles are bounded as follows:

−π
2
< ϕ <

π

2
(2)

−π
2
< θ <

π

2
(3)

−π < ψ < π (4)

Each motor Mi (i=1, 2, 3 and 4) of the Quadrotor produces
the force which is proportional to the square of the angular
speed. Known that the motors are supposedly turning only in a
fixed direction, the produced force Fi is always positive. The
front and rear motors (M1 and M3) rotate counter-clockwise,
while the left and right motors (M2 and M4) rotate clockwise.
As given in [1], [5], [2], the gyroscopic effects and the
aerodynamic torques tend to cancel in trimmed flight because
the mechanical design of the Quadrotor. The total thrust F is
the sum of individual thrusts of each motor. Let denote by m
the total mass of the Quadrotor and g the acceleration of the
gravity.

The orientation of the Quadrotor is given by the rotation
matrix R : FFF i → FFF b which depends on the three Euler angles
(ϕ, θ, ψ) and defined by the following equation:

R (ϕ, θ, ψ) =

 cψcθ sϕsθcψ − sψcθ cϕsθcψ + sψsϕ
sψcθ sϕsθsψ + cψcθ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


(5)

where c (.) = cos (.) and s (.) = sin (.).
During its flight, the Quadrotor is subjected to external

forces like the gusts of wind, gravity, viscous friction and
others self generated such as the thrust and drag forces. In
addition, external torques are provided mainly by the trust
of rotors and the drag on the body and propellers. Moments
generated by gyroscopic effects of motors are also noted.

The trust force generated by the ith rotor of the Quadrotor
is given by:

Fi =
1

2
ρΛCT r

2ω2
i = bω2

i (6)

where ρ is the air density, r and Λ are the radius and the
section of the propeller respectively, CT is the aerodynamic
thrust coefficient.

The aerodynamic drag torque, caused by the drag force at
the propeller of the ith rotor and opposed the motor torque,
is defined as follows:

δi =
1

2
ρΛCDr

2ω2
i = dω2

i (7)

where CD is the aerodynamic drag coefficient.
The pitch torque is a function of the difference (F3 − F1),

the roll torque is proportional to the term (F4 − F2) and the
yaw one is the sum of all reactions torques generated by the
four rotors and due to the shaft acceleration and propeller
drag. All these pitching, rolling and yawing torques are defined
respectively as follows:

τθ = l (F3 − F1) (8)

τϕ = l (F4 − F2) (9)

τψ = c (F1 − F2 + F3 − F4) (10)

where c is a constant coefficient and l denotes the distance
from the center of each rotor to the center of gravity.

Two gyroscopic effects torques, due to the motion of the
propellers and the Quadrotor body, are additively provided.
These moments are given respectively by:

Mgp =
4∑
i=1

Ω ∧
[
0, 0, Jr (−1)

i+1
ωi

]T
(11)

Mgb = Ω ∧ JΩ (12)

where Ω is the vector of the angular velocity in the fixed
earth frame and J = diag [Ix, Iy, Iz] is the inertia matrix of
the Quadrotor, Ix, Iy and Iz denote the inertias of the x-axis,
y-axis and z-axis of the Quadrotor, respectively, Jr denotes
the z-axis inertia of the propellers’ rotors.

The Quadrotor is controlled by independently varying the
speed of the four rotors. Hence, these control inputs are defined
as follows:

u1
u2
u3
u4

 =


F
τϕ
τθ
τψ

 =


b b b b
0 −lb 0 lb

−lb 0 lb 0
d −d d −d



ω2
1

ω2
2

ω2
3

ω2
4


(13)

where b > 0 and d > 0 are two parameters depending on the
air density, the geometry and the lift and drag coefficients of
the propeller as given in Eq. (6) and Eq. (7), and ω1,2,3,4 are
the angular speeds of the four rotors, respectively.

From Eq. (13), it can be observed that the input u1 denotes
the total thrust force on the Quadrotor body around the z-
axis, the inputs u2 and u3 represent the roll and pitch torques,
respectively. The input u4 represents the yawing torque.



B. Modeling with Newton-Euler formalism

While using the Newton-Euler formalism for modeling, the
Newton’s laws lead to the following motion equations of the
Quadrotor: {

mξ̈ = Fth + Fd + Fg
JΩ̇ =M −Mgp −Mgb −Ma

(14)

where Fth = R (ϕ, θ, ψ)

[
0, 0,

4∑
i=1

Fi

]T
denotes the total

thrust force of the four rotors, Fd = diag (κ1, κ2, κ3) ξ̇
T

is the air drag force which resists to the Quadrotor motion,
Fg = [0, 0,mg]

T is the gravity force, M = [τϕ, τθ, τψ]
T

represents the total rolling, pitching and yawing torques,
Mgp and Mgb are the gyroscopic torques and Ma =

diag (κ4, κ5, κ6)
[
ϕ̇2, θ̇2, ψ̇2

]T
is the torque resulting from the

aerodynamic frictions.
Substituting the position vector and the forces expressions

intoEq. (14), we have the following translational dynamics of
the Quadrotor:

ẍ =
1

m
(cϕcψsθ + sϕsψ)u1 −

κ1
m
ẋ

ÿ =
1

m
(cϕsψsθ)u1 −

κ2
m
ẏ

z̈ =
1

m
cϕcθu1 − g − κ3

m
ż

(15)

From the second part of Eq. (14), and while substituting
each moment by its expression, we deduce the following
rotational dynamics of the rotorcraft:

ϕ̈ =
(Iy − Iz)

Ix
θ̇ψ̇ − Jr

Ix
Ω̄r θ̇ −

κ4
Ix
ϕ̇2 +

1

Ix
u2

θ̈ =
(Iz − Ix)

Iy
ϕ̇ψ̇ − Jr

Iy
Ω̄rϕ̇− κ5

Iy
θ̇2 +

1

Iy
u3

ψ̈ =
(Ix − Iy)

Iz
θ̇ϕ̇− κ6

Iz
ψ̇2 +

1

Iz
u4

(16)

where κ1,2,...,6 are the drag coefficients and positive constant,
Ω̄r = ω1 − ω2 + ω3 − ω4 is the overall residual rotor angular
velocity.

Taking X =
(
ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż

)T
as state vec-

tor, the following state-space representation of the studied
Quadrotor is obtained as follows:

Ẋ = f (X,u) =



ẋ1 = x2
ẋ2 = a1x4x6 + a3Ω̄rx4 + a2x

2
2 + b1u2

ẋ3 = x4
ẋ4 = a4x2x6 + a6Ω̄rx2 + a5x

2
4 + b2u3

ẋ5 = x6
ẋ6 = a7x2x4 + a8x

2
6 + b3u4

ẋ7 = x8
ẋ8 = a9x8 +

1
m (cϕcψsθ + sϕsψ)u1

ẋ9 = x10
ẋ10 = a10x10 +

1
m (cϕsθsψ − sϕcψ)u1

ẋ11 = x12
ẋ12 = a11x12 +

cϕcθ
m u1 − g

(17)

where:

a1 =
Iy − Iz
Ix

; a2 = −κ4
Ix

; a3 = −Jr
Ix

; a4 =
(Iz − Ix)

Iy
;

a5 = −κ5
Iy

; a6 = −Jr
Iy

; a7 =
(Ix − Iy)

Iz
;

a8 = −κ6
Iz

; a9 = −κ1
m

; a10 = −κ2
m

;

a11 = −κ3
m

; b1 =
1

Ix
; b2 =

1

Iy
; b3 =

1

Iz

III. SLIDING MODE CONTROL OF THE QUADROTOR

A. Basic concepts of SMC

The SMC is a type of Variable Structure Control (VSC).
Its basic idea is to attract the system states towards a surface,
called sliding surface, suitably chosen and design a stabilizing
control law that keeps the system states on such a surface. For
the choice of the sliding surface shape, the general form of
Eq. (18) was proposed by Stoline and Li in [13]:

S (x) =

(
λx +

d

dt

)q−1

e (x) (18)

where x denotes the variable control (state), e (x) is the
tracking error defined as e (x) = x − xd, λx is a positive
constant that interprets the dynamics of the surface and q is
the relative degree of the sliding mode controller.

Condition, called attractiveness is the condition under which
the state trajectory will reach the sliding surface. There are
two types of conditions of access to the sliding surface. In
this paper, we will use the Lyapunov based approach. It
consists to make a positive scalar function, given by Eq. (19)
and called Lyapunov candidate function, for the system state
variables and then choose the control law that will decrease
this function:

V̇ (x) < 0, with V (x) > 0 (19)

In this case, the Lyapunov function can be chosen as:

V (x) =
1

2
S(x)2 (20)

The derivative of this above function is negative when the
following expression is checked:

S(x)Ṡ(x) < 0 (21)

The purpose is to force the system state trajectories to
reach the sliding surface and stay on it despite the presence
of uncertainty. The sliding control law contains two terms as
follows:

u (t) = ueq (t) + uD (t) (22)

where ueq (t) denotes the equivalent control which is a way to
determine the behaviour of the system when an ideal sliding
regime is established. it is calculated from the following
invariance condition of the surface:{

S (x, t) = 0

Ṡ (x, t) = 0
(23)



and uD (t) is a discontinuous function calculated by checking
the condition of the attractiveness. It is useful to compensate
the uncertainties of the model and often defined as follows:

uD (t) = −Ksign (S (t)) (24)

where K is a positive control parameter and sign (.) is the
sign operator.

B. SMC controllers design for the Quadrotor

For the attitude control, we use the rotational motion model
given by Eq. (16). The translational dynamics model of
Eq. (15) is used to design the Quadrotor position controller.
Let also consider the state vector given by Eq. (17).

We begin by defining the tracking errors which represent
the difference between the set-point and current values of the
state: {

ei+1 = ėi
ei = xi − xid, i = 1, 2, . . . , 11

(25)

The sliding surfaces are chosen based on the tracking errors
such as: 

Sϕ = e2 + λ1e1
Sθ = e4 + λ2e3
Sψ = e6 + λ3e5
Sx = e8 + λ4e7
Sy = e10 + λ5e9
Sz = e12 + λ6e11

(26)

Let consider for the roll dynamics SMC design the follow-
ing Lyapunov function:

V (Sϕ) =
1

2
S2
ϕ (27)

While referring to Eq. (19) and Eq. (21), we deduce the
expression of the derivative roll surface given as:

Ṡϕ = −K1sign(Sϕ) (28)

By changing ẋ2 with its expression and referring to the
above equations, the control law u2 is given by:

u2 =
1

b1

[
−a1x4x6 − a3Ω̄rx4 − a2x

2
2+

ẍ1d − λ1ė1 −K1sign (Sϕ)

]
(29)

While following exactly the same steps as the roll controller
design, the control inputs u3 and u4, responsible of generating
the pitch and yaw rotations respectively, are calculated as
follows:

u3 =
1

b2

[
−a4x2x6 − a6Ω̄rx2 − a5x

2
4+

ẍ3d − λ2ė3 −K2sign (Sθ)

]
(30)

u4 =
1

b3

[
−a7x2x4 − a8x

2
6+

ẍ5d − λ3ė5 −K3sign (Sψ)

]
(31)

Using the same method, we deduced the control laws u1,
ux and uy for the stabilization of z, x and y positions of the
Quadrotor, respectively. These control inputs are computed as
follows:

u1 =
m

cϕcθ
[−a11x12 + ẍ11d − λ6ė11 −K6sign (Sz) + g]

(32)

TABLE I
QUADROTOR MODEL PARAMETERS.

Parameters Values and units
Lift coefficient b 2.984 e-05N.s2/rad2

Drag coefficient d 3.30 e-07 N.s2/rad2

Mass m 0.5 kg
Arm length l 50 cm
Motor inertia Jr 2.8385 e-05 N.m/rad/s2
Quadrotor inertia J diag (0.005, 0.005, 0.010)
aerodynamic friction coeffs. κ1,2,3 0.3729
translational drag coeffs. κ4,5,6 5.56 e-04
acceleartion of the gravity g 9.81 m/s2

ux =
m

u1
[−a9x8 + ẍ7d − λ4ė7 −K4sign (Sx)] (33)

uy =
m

u1
[−a9x10 + ẍ9d − λ5ė9 −K5sign (Sy)] (34)

IV. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed SMC approach for the Quadro-
tor attitude stabilization is implemented in order to verify his
validity and efficiency. For the simulation, we use the physical
parameters of Table I . The initial position and angle values
are set as [0, 0, 0] m and [0, 0, 0] rad.

Even though the reference angle were changed in every
moment, the proposed control scheme managed to effectively
hold the quadrotor’s attitude in finite-time, as shown in Fig. 2
and Fig. 3 for the attitude dynamics control, and in Fig. 4 and
Fig. 5 for the position dynamics tracking. In Fig. 6, we present
the helical trajectory tracking of the Quadrotor. It is shown that
even though the quadrotor’s attitude and position are affected
by the abruptly changed reference angles, the designed SMC
controllers are able to drive all these state variables back to the
new reference angle and position within seconds. Moreover,
the aerodynamic forces and moments are taken into account
in the controllers design. Those demonstrate the robustness of
the proposed control strategy and its effectiveness.
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Fig. 2. SMC- based results for the attitude tracking of the Quadrotor.
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Fig. 3. Control inputs for the attitude dynamics tracking.
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Fig. 4. SMC based results for the position tracking of the Quadrotor.

V. CONCLUSION

In this paper, we deal with the problem of the stabilization
and tracking of a Quadrotor vehicle using a nonlinear sliding
mode control approach. Firstly, the development of a dynamic
nonlinear model of the Quadrotor, taking into account the
different physics phenomena and aerodynamic forces and
moments, is presented thanks to the Newton-Euler formalism.
Sliding mode controllers are then designed based on the
Lyapunov theory to stabilize and track the Quadrotor attitude
and position. Several simulations results are carried out in
order to show the effectiveness of the proposed modeling and
nonlinear control methodology. Forthcoming works deal with
the tuning and the optimization of all SMC parameters with
metaheuristics-based approaches. In addition, the Hardware-
In-the-Loop (HIL) co-simulation of the designed SMC ap-
proach will be also investigated.
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Fig. 5. Control inputs for the position dynamics tracking.

1

0

x-1-1

-0.5

0

y

0.5

40

50

60

0

10

20

30

1

z

Desired trajectory

real trajectory

Fig. 6. SMC- based helical path tracking of the Quadrotor.

REFERENCES

[1] R. Lozano (Ed.), Unmanned aerial vehicles: Embedded control, John
Wiley & Sons, 2013.

[2] T. Bresciani, Modelling, Identification and Control of a Quadrotor
Helicopter, Master Thesis, Department of Automatic Control, Lund
University, Sweden, 2008.

[3] R. Austin, Unmanned Aircraft Systems: UAVs Design, Development and
Deployment, John Wiley & Sons, UK, 2010.

[4] K. Nonami, F. Kendoul, S. Suzuki, W. Wang and D. Nakazawa, Au-
tonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial
Vehicles, Springer, New York, 2010.

[5] J.A. Guerrero and R. Lozano (Eds.), Flight Formation Control, Wiley-
ISTE, UK, USA, 2012.

[6] S. Bouabdallah, A. Noth and R. Siegwart, PID vs. LQ Control Techniques
Applied to an Indoor Micro Quadrotor, Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2451–
2456, Sendai, Japan, October 2004.

[7] S. Khatoon, D. Gupta, and L.K. Das, PID and LQR control for a Quadro-
tor: Modeling and simulation, Proceedings of the 2014 International



Conference on Advances in Computing, Communications and Informatics,
pp. 796–802, New Delhi, September 2014.

[8] S. Islam, J. Dias and L.D. Seneviratne,Adaptive tracking control for
Quadrotor unmanned flying vehicle, Proceedings of the 2014 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM),
pp. 441–445, Besanon, France, July 2014.

[9] V.G. Adr, A.M. Stoica and J.F. Whidborne, Sliding mode control of a
4Y octorotor, UPB Scientific Bulletin, Series D: Mechanical Engineering
Journal, vol. 74, no. 4, pp. 37-52, 2012.

[10] E-H. Zheng, J-J. Xiong and J-L. Luo, Second Order Sliding Mode
Control for a Quadrotor UAV, ISA Transactions, vol. 53, no. 4, pp. 1350–
1356, 2014.

[11] L. Besnard, Y.B. Shtessel and B. Landrum, Quadrotor Vehicle Control
via Sliding Mode Controller Driven by Sliding Mode Disturbance Ob-
server, Journal of the Franklin Institute, vol. 349, pp. 658–684, 2012.

[12] G.V. Raffo, M.G. Ortega and F.R. Rubio, An Integral Predic-
tive/Nonlinear H∞ Control Structure for a Quadrotor Helicopter, Au-
tomatica, vol. 46, no.1, pp. 29–39, 2010.

[13] J-J.E. Slotine and W. Li, Applied nonlinear control, Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.




