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Abstract—This paper presents an integral high order sliding
mode controller for a class of multi-input, multi-output nonlinear
uncertain system. After transforming the system into high order
input-output dynamic system, the idea is to define an integral
sliding surface based on a nominal control law designed to
stabilize in finite time the unperturbed system. By imposing some
conditions on the controller parameter, the proposed method
aims to stabilize the system although the presence of bounded
uncertainties. In order to reduce the chattering caused by the
discontinuous sign function in the controller, we replace this
function by an hyperbolic tangent trigonometric function which
is smooth and continuous. Stability of the proposed controller is
proved based on Lyapunov approach. An illustrative example
of perturbed chaotic permanent magnet synchronous motor
demonstrates the effectiveness of this controller.

I. INTRODUCTION

Controlling physical systems, which are subjected to exter-
nal disturbances and varying parameters, is quite challenging
because such systems are difficult to model. Several control
techniques have been reported in literature to tackle the
uncertain systems with good robustness. Among them, we cite
sliding mode control [15], [17] and variable structure control
[6], [5]. Sliding mode control has been observed since 1930
[17]. It is known for its robustness and effectiveness that make
it very attractive.

Conventional sliding mode control consists: first, on choos-
ing a sliding manifold to steer the states of the system to
move along it and then, on designing a discontinuous control
law in such a way that the system trajectories reach and
stay on the choosing manifold after a finite time. Unfortu-
nately, the presence of high control switching frequency leads
to undesirable and dangerous phenomenon called chattering.
Various approaches have been suggested to attenuate this
undesirable effect [1], [2], [3]. Such approach is to replace the
discontinuous signum function by a continuous approximation
as the saturation function [3] or the hyperbolic tangent [9] (the
boundary layer solution). Another approach is the high order
sliding mode. Indeed, the sign function acts on high order
time derivative of the sliding surface instead of the first time
derivative [16], [13]. Also, it doesn’t require relative degree

1 of the system which is a restriction of the standard sliding
mode control.

The approach of high order sliding mode is also used in
[12], but the chattering is usually exists due to the large
discontinuous gain especially when the system is strongly
perturbed. In this context, this paper proposes a novel high
order sliding mode controller for a class a multi-input multi-
output decoupled systems. The decoupling allows that each
subsystem can be treated independently so the discontinuous
control gain is not the same and can be reduced for some
subsystems. We adopt this method to control the chaotic
behavior [8], [11], [4] exhibited by a smooth air-gap permanent
magnet synchronous motor under some specific conditions.
This kind of electric drives is widely used in various industrial
applications owing to many features such as low inertia, high
efficiency, low maintenance cost. . . etc [14].

The remainder of the work is organized as follows. In sec-
tion 2, the problem under investigation is formulated. Section
3 is devoted to describe the design of the proposed controller.
Simulation results for suppressing the chaotic behavior of the
PMSM are presented in section 4. The fifth section includes
some remarks.

A. Problem statement
A class of non linear multi-input, multi-output uncertain

system is considered:

ẋ = f(x) +

m∑
i=1

gi(x)ui

y1 = σ1(x)

...
ym = σm(x)

(1)

where x ∈ Rn is the state vector and u = [u1, . . . , um]T ∈ Rm

is the control vector. f(x) and g(x) = [g1, . . . , gm]T are
smooth uncertain functions. The uncertainties are due to
parameter variations, unmodeled dynamics or external distur-
bances. σ(x) = [σ1, . . . , σm]T ∈ Rm is a smooth measurable
output vector, known as the sliding variables.
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Assumption 1. The relative degree vector r = [r1, . . . ,
rm]T of system (1) with respect to σ(x) is assumed to be
constant and known and the associated zero dynamics are
stable.

Definition 1. ([10], [12]) Consider the nonlinear system (1)
and suppose that the time derivatives of the sliding variables
σi, σ̇i, . . . , σ

(ri−1)
i are considered continuous (i = 1, . . . ,m).

The manifold defined by:

Σr = {x : |σi(x) = . . . = σ
(ri−1)
i (x) = 0, i = 1, . . . ,m}

(2)
is called ‘rth-order sliding set’ which is non-empty and locally
an integral set in the Filippov sense [7]. The motion on Σr

is called ’rth-order sliding mode’ with respect to the sliding
variable σ.

By defining a suitable discontinuous control action, the rth-
order sliding mode control approach consists on moving the
states along the switching surfaces σi(x) = 0 and to keep its
(ri− 1) first time derivatives (σ̇i, . . . , σ

(ri−1)
i ) to a vicinity of

zero. The rthi time derivative of each σi satisfies the following
equation:[

σ
(r1)
1 (x), . . . , σ

(rm)
m (x)

]
= A(x) +B(x)u (3)

where A(x) = [Lr1
f σ1(x), . . . , L

rm
f σm(x)]T

B(x) =

 Lg1L
r1−1
f σ1(x) · · · LgmLr1−1

f σ1(x)
...

...
Lg1L

rm−1
f σm(x) · · · LgmLrm−1

f σm(x)


with Lf and Lg are the Lie derivatives of the smooth functions
in (1). B(x) is non singular and LgjL

k
fσi(x) = 0, for 1 ≤

i ≤ m, 1 ≤ j ≤ m, and 0 ≤ k ≤ ri − 1.
Assumption 2. For the rest of this paper, we suppose that

matrix B(x) is diagonal i.e. LgjL
ri−1
f σi(x) = 0, for 1 ≤ j ≤

m and j ̸= i.

B(x) =

b1 · · · 0
...

. . .
...

0 · · · bm


Assumption 3. B(x) and A(x) are uncertain and partitioned

into well known nominal parts (Ā and B̄) and uncertain parts
(∆A and ∆B), i.e.{

A(x) = Ā(x) + ∆A(x)
B(x) = B̄(x) + ∆B(x)

Also, we define : F (x) = [f1(x), . . . , fm(x)]T ∈ Rm and
G(x) = diag(gi(x)) ∈ Rm∗m , {i = 1, . . . ,m}
where

{
F (x) = ∆A(x)−∆B(x)B̄

−1(x)Ā(x)
G(x) = ∆B(x)B̄

−1(x)
There are upper bounds nonlinear a priori known functions
ρi(x) and a priori known constants 0 < ϑi ≤ 1 such that for all
{i = 1, . . . ,m} the uncertain functions satisfy the following
inequalities:{

∥fi(x)∥ ≤ ρi(x)
∥gi(x)∥ ≤ 1− ϑi

where ∥.∥ denotes a norm on Rn .
To summarize, an rth-order sliding mode controller of

system (1) with respect to the sliding variable σ is equivalent

to the finite time stabilization of the following multivariable
uncertain system:


ż1,i = z2,i
... , ∀i = {1, . . . ,m}
żri−1,i = zri,i[

żr1,1, żr2,2, . . . , żrm,m

]T
= A(x) +B(x)u

(4)

with zl,i = σ
(l−1)
i , 1 ≤ l ≤ ri.

Consider the following preliminary feedback:

u = B̄−1{−Ā+ v} (5)

with v = [v1, . . . , vm]T the vector of the auxiliary control
input designed to stabilize the following new system inspite
of the uncertainties:


ż1,i = z2,i
... , ∀i = {1, . . . ,m}
żri−1,i = zri,i[

żr1,1, . . . , żrm,m

]T
= [Im +∆BB̄

−1]v −∆BB̄
−1Ā+∆A

(6)

B. Sliding mode controller design

In this section, we first propose a nominal control law to
guarantee the finite time stabilization of an integrator chain
system. In other words, a finite time stabilizing controller to
nominal system (6) described by:

ż1,i = z2,i
... ,∀i = {1, . . . ,m}
żri−1,i = zr,i
żri,i = vnom,i

(7)

Then, we design a discontinuous control law in order to
stabilize the perturbed system (6) in finite time.

1) Finite time stabilization of an integrator chain system:
System (7) is composed of m single-input, single-output
independent integrator chains. The control objective is to steer
to z = [zT1 , . . . , z

T
m] = 0 the states of the system (7)(with

zi = [z1,i, . . . , zri,i], i = {1, . . . ,m} ).
Theorem 1. [12]: Let the constants κ1,i, κ2,i, . . . , κm,i be

positive such that the polynomial λri + κri,iλ
ri−1 + . . . +

κ2,iλ+ κ1,i is Hurwitz. There exists ϵi ∈ (0, 1) such that for
every αi ∈ (1− ϵi, 1), system (7) is stabilized at the origin in
finite time under the following feedback:

vnom,i(zi) = −κ1,isign(z1,i)|z1,i|α1,i − κ2,isign(z2,i)|z2,i|α2,i

− . . .− κri,isign(zri,i)|zri,i|αri,i

(8)
where α1,i, . . . , αri,i satisfy:

αj−1,i =
αj,iαj+1,i

2αj+1,i − αj,i
, j ∈ {2, . . . , ri} (9)

with αri+1,i = 1 and αri,i = αi



2) Integral sliding mode controller design: After designing
a finite time controller vnom(z) that guarantees the finite time
stabilization, at the origin, of the nominal system (7), our aim
in this section is to stabilize the perturbed system (6) at zero
in finite time. To this end, we consider the following integral
sliding surface:

s(z(t)) = [zr1,1(t)− zr1,1(t0), . . . , zrm,m(t)− zrm,m(t0)]
T

−
∫ t

t0

vnom(τ)dτ

(10)
where

vnom = [vnom,1, . . . , vnom,m]T , (11)

s(z(t)) = [s1(t), . . . , sm(t)]T (12)

and t0 being the initial time. The state trajectories start on this
sliding surface from the initial time t0 (s(t0) = 0).

The time derivative of (10) along the system trajectories is
given by:

ṡ = [żr1,1, . . . , żrm,m]T − vnom

= [Im +G(x)]v + F (x)− vnom
(13)

In order to stabilize system (6) at the origin, we consider
the following control law:

v(z) = vnom(z) + vdisc(z) (14)

where vnom is defined in (8),(9),(11) and

vdisc = −K.sign(s) (15)

with ‘.‘ is the dot product and the gain K defined by K =
[k1, k2, . . . , km]T satisfy:

ki ≥
(1− ϑi)∥vnom,i∥+ ρi + ξi

ϑi
, ∀i = {1, . . . ,m} (16)

Theorem.2 Consider the non linear system (1) with assump-
tions (1− 3) fulfilled. The control law described by:

u = B̄−1{−Ā+ vnom(z)−K.sign(s)} (17)

where vnom(z) is given by (11) and K satisfies the condition
(16), ensures the establishment of an rth order sliding mode
with respect to σ in finite time.

Proof: Choose the following Lyapunov function:

V =
1

2
sT s (18)

The time derivative of V along the system trajectories is given
by:

V̇ = sT ([Im +G]v + F − vnom)

= sT ([Im +G]vdisc + F +Gvnom)
(19)

If we choose vdisc as in (15), the gains ki as in (16) and under
the assumptions (2− 3), one obtains:

V̇ =

m∑
i=1

(−ki(1 + gi)sisign(si) + si(fi + givnom,i))

≤
m∑
i=1

∥si∥(−ki(1 + gi) + ∥fi∥+ ∥gi∥∥vnom,i∥)

≤
m∑
i=1

(−ki∥si∥+ ki(1− ϑi)∥si∥+ ρi∥si∥+ (1− ϑi)∥si∥

∥vnom,i∥)

≤
m∑
i=1

∥si∥(−ϑiki + (1− ϑi)∥vnom,i∥+ ρi + ξi)

≤
m∑
i=1

−ξi∥si∥

≤
m∑
i=1

−minξi∥si∥

≤ −minξi
√
2V

(20)
Inequality (20) implies that V = 0 in finite time and therefore
the manifold s(z(t)) becomes zero in some finite time.

Remark1: Although the use of high order sliding mode
control, the increase of uncertainties and perturbations requires
a greater control effort so the chattering is usually exist.
Therefore, to alleviate this phenomenon, we replace the sign
function by the following hyperbolic tangent function:

tanh(µs) =
1− exp(−2µs)

1 + exp(−2µs)
(21)

where µ is a positive parameter defining the smoothing degree
of the function.

C. Application to a chaotic PMSM

In order to evaluate the efficiency of the proposed control
law, simulation studies are carried out on the chaotic perturbed
permanent magnet synchronous motor. Our aim is to suppress
the chaotic behavior of the motor, in the presence of uncer-
tainties and external perturbations, by applying the constructed
high order integral sliding mode controller.

1) System Description: The mathematical model of a
smooth-air-gap uncertain chaotic permanent magnet syn-
chronous motor is described as follows:

i̇d = −id + ωiq + ud

i̇q = −iq + ωid + (γ + δγ)ω + uq

ω̇ = (σ + δσ)(iq − ω)− Tl

(22)

Where id and iq are the direct-axis and quadrature-axis cur-
rents respectively (A), ω is the electrical rotor angular speed
(rad/s), ud, uq and Tl stand for the direct-axis, quadrature-
axis voltages (v) and the load torque (Nm),γ = 20, σ = 5.46,
δγ and δσ are the uncertain parts of γ and σ respectively and
the dot is the derivation with respect to t.



By denoting x1 = id, x2 = iq and x3 = ω, the PMSM
model (22) has the form of system (1) with:

x =

x1

x2

x3

, f(x) =

 −x1 + x2x3

−x2 − x1x3 + (γ + δγ)x3

(σ + δσ)(x2 − x3)− Tl

,

g(x) =

1 0
0 1
0 0

, u =

[
uq

ud

]
The control objective is to suppress the chaotic phenomenon
of the motor and drive it to track the following references
asymptotically: {

x3ref (x) = 5
x1ref (x) = 2

Suppose that the sliding surfaces are defined as:

σ =

[
σ1

σ2

]
=

[
x3 − x3ref

x1 − x1ref

]
(23)

Thus, the relative degree of system (22) versus the sliding

variable σ is r =

[
r1
r2

]
=

[
2
1

]
. From equation (3), we obtain:[

σ̈1

σ̇2

]
= (Ā+∆A) + (B̄ +∆B)

[
uq

ud

]
(24)

with Ā =

σ̄((−x2 − x3x1 + γ̄x3)− σ̄(x2 − x3))

−x1 + x3x2

,

∆A =


δσ(−x2 − x3x1 + (γ̄ + δγ)x3 − (σ̄ + δσ)(x2

−x3) + Tl) + σ̄δγx3 − σ̄δσ(x2 − x3)− Ṫl

0

,

B̄ =

[
σ̄ 0
0 1

]
, ∆B =

[
δσ 0
0 0

]
Then, by using the following control law derived from (5):[

uq

ud

]
= B̄−1{−Ā+ v} (25)

system (24) becomes[
σ̈1

σ̇2

]
=

[
I2 +∆BB̄−1

]
v −∆BB̄−1Ā+∆A (26)

whith v reading as:

v =

[
vnom,1

vnom,2

]
−
[
k1sign(s1)
k2sign(s2)

]
(27)

The nominal control laws are obtained from (8) and (9) as
vnom,1 = −κ1,1sign(σ1)|σ1|α1,1 − κ2,1sign(σ̇1)|σ̇1|α2,1

vnom,2 = −κ1,2sign(σ2)|σ2|α1,2

The integral sliding surfaces are chosen as:

s1 = σ̇1(t)− σ̇1(t0)−
∫ t

t0

vnom,1dτ

s2 = σ2(t)− σ2(t0)−
∫ t

t0

vnom,2dτ

Remark.2 The time derivative of the first sliding variable
(σ̇1) is calculated using Euler method and the high frequencies
caused by the derivation were suppressed by a low pass filter
with a small constant time.

2) Simulation results: A comparative study between high
order sliding mode controller with discontinuous sign function,
high order sliding mode controller with continuous hyperbolic
tangent function and the nominal controller is carried out. The
integration was executed according to the Euler method with
the integration step τ = 1ms and following initial conditions:
(ω(0), iq(0), id(0)) = (−0.2685, 0.5, 8.7)
The constant time of the low pass filter is chosen ζ = 10ms. A
constant load torque of Tl = 5Nm is applied between seconds
10 and 16. The parameters of the nominal control are chosen
as: κ1,1 = 25, κ2,1 = 10, κ1,2 = 20, α1,1 = 0.9048, α2,1 =
0.95, α1,2 = 0.99. The parameters σ and γ are uncertain, we
take a variation of 25%. Thus δγ = −5 and δσ = 1.365. One
gets ρ1 = 15, ρ2 = 10 and ϑ1 = 0.7, ϑ2 = 0.5. Finally ,the
gains k1 and k2 are tuned according to (16) (k1 = 200, k2 =
50).
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Fig. 1. ω and Id versus time (sec)

The controller is applied at t = 5s. It is clear from Fig.1
that when the proposed controller (pink and blue curves) is
applied, tracking of the reference signals is achieved in finite
time despite the presence of perturbation and parameters un-
certainties. But, the nominal control law (red curve) is unable
to tackle the perturbed system and achieve the convergence of
the system states. The control inputs and the sliding surfaces
are depicted in Figs. 2-3. We remark the chattering attenuation
when using the hyperbolic tangent function with the same
tracking performance.

II. CONCLUSION

In this study, an integral higher order sliding mode controller
is proposed for a class of multi-input, multi-output nonlinear
uncertain systems. The design of higher order sliding mode
control is equivalent to the finite time stabilization of higher
order input-output system with bounded uncertainties. Due to
the continuous hyperbolic tangent which replaces the signum
function, the proposed control law becomes chattering free in
the control input. Stability of the controlled system is proved
based on Lyapunov approach. Simulation results demonstrates
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that the proposed controller can eliminates the chaotic be-
havior of a permanent magnet synchronous motor subjected
to parameter uncertainties and load torque disturbances. In
practice, the discontinuous control gain is difficult to find
because the upper bound of the system uncertainty is often
unknown, so as perspective, we propose an adaptive tuning
law to estimate this gain.
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